-
公开(公告)号:CN118471485B
公开(公告)日:2024-10-22
申请号:CN202410933094.1
申请日:2024-07-12
Applicant: 之江实验室
Abstract: 本发明公开了一种基于斜率截断功能连接矩阵的疾病预测系统、设备及介质,包括从静息态脑功能磁共振图像提取每个脑区的时间序列;计算每个被试的任意两两脑区之间的第一斜率差值和第二斜率差值,并根据斜率对应的时间点截取时间序列X和Y;计算截取后的时间序列X和Y的皮尔逊相关系数,与基准值比较,选取其中较大值作为功能连接值;基准值为未截取的时间序列X和Y的皮尔逊相关系数;用于以功能连接矩阵为特征进行疾病预测;功能连接矩阵通过计算每个被试的所有两两脑区的功能连接值得到。以该系统计算的功能连接矩阵为特征进行疾病预测,可以大大提高疾病预测的准确率以及预测模型在多中心数据的泛化能力。
-
公开(公告)号:CN118471485A
公开(公告)日:2024-08-09
申请号:CN202410933094.1
申请日:2024-07-12
Applicant: 之江实验室
Abstract: 本发明公开了一种基于斜率截断功能连接矩阵的疾病预测系统、设备及介质,包括从静息态脑功能磁共振图像提取每个脑区的时间序列;计算每个被试的任意两两脑区之间的第一斜率差值和第二斜率差值,并根据斜率对应的时间点截取时间序列X和Y;计算截取后的时间序列X和Y的皮尔逊相关系数,与基准值比较,选取其中较大值作为功能连接值;基准值为未截取的时间序列X和Y的皮尔逊相关系数;用于以功能连接矩阵为特征进行疾病预测;功能连接矩阵通过计算每个被试的所有两两脑区的功能连接值得到。以该系统计算的功能连接矩阵为特征进行疾病预测,可以大大提高疾病预测的准确率以及预测模型在多中心数据的泛化能力。
-
公开(公告)号:CN115147417B
公开(公告)日:2022-11-15
申请号:CN202211070002.9
申请日:2022-09-02
Applicant: 之江实验室
Abstract: 本发明公开了一种基于过滤法特征选择的功能连接矩阵处理系统及装置,包括:获取被试预处理后的静息态脑功能磁共振图像;提取时间序列;计算皮尔逊相关系数,得到皮尔逊相关系数矩阵;将皮尔逊相关系数矩阵进行向量化;利用过滤法计算定量相关性指标,并基于预设阈值,选择定量相关性指标;利用与所述疾病诊断结果相关性高的对应的定量相关性指标,对选择的功能连接特征加权处理,得到功能连接矩阵;通过所述功能连接矩阵得到预测结果。本发明在以过滤法进行特征选择的基础上,以计算得到的特征与所述疾病诊断结果的定量相关性指标对所选择的特征进行加权处理,使得与所述疾病诊断结果相关性高的特征具有更高的影响权重,提高表型预测的准确率。
-
公开(公告)号:CN115116607A
公开(公告)日:2022-09-27
申请号:CN202211056174.0
申请日:2022-08-30
Applicant: 之江实验室
Abstract: 本发明公开了一种基于静息态磁共振迁移学习的脑疾病预测系统,分别获取健康成人静息态磁共振大数据集和对应脑疾病的患者静息态磁共振数据,预处理后配准到标准脑空间;通过匹配到标准脑空间的脑图谱提取各个脑区的时间信号;利用图卷积网络和门控循环网络构建深度学习模型并基于健康成人大数据集进行预训练;基于预训练模型和患者静息态功能磁共振数据进行模型微调和疾病预测。本发明提取静息态磁共振信号中的时空特征,利用健康成人的静息态磁共振大数据集对深度学习模型进行预训练,充分挖掘健康成人静息态磁共振中的固有时空特征模式,并将健康成人数据中学习到的先验时空特征模式迁移到脑疾病预测中,有效提高模型的预测性能。
-
公开(公告)号:CN114334140A
公开(公告)日:2022-04-12
申请号:CN202210218603.3
申请日:2022-03-08
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多关系功能连接矩阵的疾病预测系统及装置,根据脑图谱提取的静息态功能磁共振时间序列,分别计算皮尔逊相关系数矩阵与DTW距离矩阵,并结合皮尔逊相关系数矩阵将DTW距离矩阵转换为包含相关程度及相关方向信息,且数值范围和皮尔逊系数取值范围相当的DTW'矩阵,加权联合后得到功能连接矩阵。本发明联合DTW距离信息以减弱功能连接的动态变化及不同脑区功能信号的非同步性对功能连接矩阵的影响,使计算得到的功能连接矩阵可以更好地反应不同脑区功能信号之间的相关关系。以本发明系统计算的功能连接矩阵为特征进行精神疾病预测,可以提高疾病预测的准确率以及预测模型在多中心数据的泛化能力。
-
公开(公告)号:CN113539435A
公开(公告)日:2021-10-22
申请号:CN202111090208.3
申请日:2021-09-17
Applicant: 之江实验室
Abstract: 本发明公开了一种基于图模型的脑功能配准方法,该方法以被试特定认知功能态下的脑功能活动信号为输入,以脑图模型为基础,将高维的脑功能影像数据映射到二维时间序列矩阵,构建图卷积神经网络模型用以区分不同的认知功能状态,同时利用荟萃分析方法生成脑激活分布先验图辅助预测每个被试特异性的脑功能激活模式,两者结合起来实现将每个被试的脑功能影像数据映射到可适用于大规模群体的共享表征空间,最终实现个体间精准的脑功能对齐。本方法不仅可以增强群体上的统计检验的效应量,减少脑认知功能研究中所需被试样本数,节省临床研究成本,同时在共享表征空间中生成的图表征信息还可以用于精准预测被试的脑功能状态和行为学指标。
-
公开(公告)号:CN116759096B
公开(公告)日:2023-12-08
申请号:CN202311055995.7
申请日:2023-08-22
Applicant: 之江实验室
IPC: G06F17/00
Abstract: 本发明公开了一种基于多重比较功能连接矩阵的疾病预测系统,该系统包括疾病预测设备和存储设备;存储设备用于存储静息态功能磁共振图像数据;疾病预测设备包括:被试获取及预处理模块用于获取静息态功能磁共振图像;脑区时间序列提取模块用于提取每个脑区的时间序列;功能连接值计算模块用于计算每个被试的所有两两脑区之间的功能连接值,得到功能连接矩阵;疾病预测模块,用于以功能连接矩阵为特征进行疾病预测。本发明通过取两两信号在不同状态下的最大相关系数从而更好地体现不同脑区功能信号之间的相关性,减弱不同脑区功能信号的非同步性及功能连接的动态变化对功能连接矩阵的影响,可以大大提高疾病预测的准确率。
-
公开(公告)号:CN115147417A
公开(公告)日:2022-10-04
申请号:CN202211070002.9
申请日:2022-09-02
Applicant: 之江实验室
Abstract: 本发明公开了一种基于过滤法特征选择的功能连接矩阵处理系统及装置,包括:获取被试预处理后的静息态脑功能磁共振图像;提取时间序列;计算皮尔逊相关系数,得到皮尔逊相关系数矩阵;将皮尔逊相关系数矩阵进行向量化;利用过滤法计算定量相关性指标,并基于预设阈值,选择定量相关性指标;利用与所述疾病诊断结果相关性高的对应的定量相关性指标,对选择的功能连接特征加权处理,得到功能连接矩阵;通过所述功能连接矩阵得到预测结果。本发明在以过滤法进行特征选择的基础上,以计算得到的特征与所述疾病诊断结果的定量相关性指标对所选择的特征进行加权处理,使得与所述疾病诊断结果相关性高的特征具有更高的影响权重,提高表型预测的准确率。
-
公开(公告)号:CN114376558B
公开(公告)日:2022-07-19
申请号:CN202210296098.4
申请日:2022-03-24
Applicant: 之江实验室
Abstract: 本发明公开了一种基于磁共振和孪生图神经网络的脑图谱个体化方法及系统;首先,对静息态功能磁共振数据(rs‑fMRI)利用基于感兴趣区域的功能连接提取特征,同时对该特征进行费雪变换和指数变换;其次,对该数据集中T1加权的磁共振数据提取对应邻接矩阵;然后,以变换之后的特征和邻接矩阵作为输入,以组图谱标签和采样掩膜作为输出,设计孪生图神经网络进行训练和测试。相比于其他的rs‑fMRI个体化图谱方案,本发明利用rs‑fMRI和组图谱的数据特点设计的孪生网络架构和中心采样模式所重建的个体化脑图在任务态磁共振数据上的激活分布更加均匀,同时具有更短的重建时间。
-
公开(公告)号:CN114334140B
公开(公告)日:2022-07-19
申请号:CN202210218603.3
申请日:2022-03-08
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多关系功能连接矩阵的疾病预测系统及装置,根据脑图谱提取的静息态功能磁共振时间序列,分别计算皮尔逊相关系数矩阵与DTW距离矩阵,并结合皮尔逊相关系数矩阵将DTW距离矩阵转换为包含相关程度及相关方向信息,且数值范围和皮尔逊系数取值范围相当的DTW'矩阵,加权联合后得到功能连接矩阵。本发明联合DTW距离信息以减弱功能连接的动态变化及不同脑区功能信号的非同步性对功能连接矩阵的影响,使计算得到的功能连接矩阵可以更好地反应不同脑区功能信号之间的相关关系。以本发明系统计算的功能连接矩阵为特征进行精神疾病预测,可以提高疾病预测的准确率以及预测模型在多中心数据的泛化能力。
-
-
-
-
-
-
-
-
-