-
公开(公告)号:CN117369783A
公开(公告)日:2024-01-09
申请号:CN202311665188.7
申请日:2023-12-06
Applicant: 之江实验室
Abstract: 在本说明书提供的一种安全代码生成模型的训练方法及装置中,根据第一业务需求指令与第一安全代码,确定思维链提示文本,以及将安全提示词、第二业务需求指令以及该思维链提示文本,输入安全代码生成模型,生成第二安全代码。根据第二业务需求指令,通过该安全代码生成模型,生成业务代码,根据该业务代码与该第二安全代码的差异,确定损失,并以损失最小为优化目标训练该安全代码生成模型。通过引入思维链提示文本,使生成的第二安全代码兼顾了安全风险,及以该第二安全代码与业务代码的损失最小为优化目标训练模型,使训练完的安全代码生成模型仅根据业务需求指令,就可生成满足该业务需求且兼顾安全风险的安全代码,节约了代码开发的成本。
-
公开(公告)号:CN117369783B
公开(公告)日:2024-02-23
申请号:CN202311665188.7
申请日:2023-12-06
Applicant: 之江实验室
Abstract: 在本说明书提供的一种安全代码生成模型的训练方法及装置中,根据第一业务需求指令与第一安全代码,确定思维链提示文本,以及将安全提示词、第二业务需求指令以及该思维链提示文本,输入安全代码生成模型,生成第二安全代码。根据第二业务需求指令,通过该安全代码生成模型,生成业务代码,根据该业务代码与该第二安全代码的差异,确定损失,并以损失最小为优化目标训练该安全代码生成模型。通过引入思维链提示文本,使生成的第二安全代码兼顾了安全风险,及以该第二安全代码与业务代码的损失最小为优化目标训练模型,使训练完的安全代码生成模型仅根据业务需求指令,就可生成满足该业务需求且兼顾安全风险的安全代码,节约了代码开发的成本。(56)对比文件张晶;黄小锋.基于业务模型和界面模型的代码生成工具.电脑与信息技术.2016,(第02期),全文.
-
公开(公告)号:CN116204879B
公开(公告)日:2023-12-05
申请号:CN202211735828.2
申请日:2022-12-30
Applicant: 之江实验室
IPC: G06F21/56
Abstract: 本申请涉及一种恶意文件检测方法、装置、电子装置及存储介质,该恶意文件检测方法包括:基于文件生成日志,按预设第一周期获取目标的第一特征数据;按预设时间窗口期对第一特征数据进行累积处理,得到第二特征数据;对第一特征数据和第二特征数据进行多维处理,得到目标特征数据;将目标特征数据输入训练完备的预测模型,得到多条预测结果,并将多条预测结果进行合并,得到目标预测结果;根据目标预测结果,判定目标特征数据对应的文件是否为恶意文件。通过本申请,解决了现有恶意文件检测技术无法检测出混淆型的恶意脚本文件,计算机、服务器等设备仍存在被恶意文件破坏风险问题,提高了恶意脚本文件的检测准确度,提高计算机等设备的安全性。
-
公开(公告)号:CN116227474B
公开(公告)日:2023-08-25
申请号:CN202310514835.8
申请日:2023-05-09
Applicant: 之江实验室
IPC: G06F40/247 , G06N20/00
Abstract: 本说明书公开了一种对抗文本的生成方法、装置、存储介质及电子设备,包括:获取用于生成对抗文本的各原始文本,根据预先训练的第一语言模型,确定各原始文本的特征向量,并对各原始文本聚类,得到指定数量的文本簇。然后,从各文本簇中确定代表文本,再确定各代表文本对应的初始对抗文本。然后,根据确定出的代表文本的原始关键词和初始对抗关键词之间的差异,从预设的各思维链提示模板中,确定目标思维链提示模板。之后,根据代表文本和代表文本的初始对抗文本,采用目标思维链提示模板,生成思维链提示文本。将思维链提示文本输入预先训练的第二语言模型,得到目标对抗文本。可以更加灵活地生成对抗文本,减少对抗文本的生成成本。
-
公开(公告)号:CN116630480A
公开(公告)日:2023-08-22
申请号:CN202310862442.6
申请日:2023-07-14
Applicant: 之江实验室
Abstract: 本发明涉及交互式文本驱动图像编辑的方法、装置和电子设备,方法包括获取图像样本并判断图像样本是否合规;将图像样本输入到图像逆向模型得到原始图像逆向特征;获取文本样本并判断文本样本是否合规;将文本样本输入到文本编码器中得到文本特征;将原始图像逆向特征和文本特征输入到多模态融合模型得到编辑图像特征;将编辑图像特征输入到图像生成器得到编辑后图像;询问用户是否继续输入文本样本,若继续,继续获取文本样本;否则输出最终编辑后图像。与现有技术相比,本发明放开了传统编辑场景对于输入文本内容的限制,可实现针对于同一张原始图像进行多次文本输入,渐进式修改对应图像区域,提高图像编辑方法灵活性。
-
公开(公告)号:CN116204879A
公开(公告)日:2023-06-02
申请号:CN202211735828.2
申请日:2022-12-30
Applicant: 之江实验室
IPC: G06F21/56
Abstract: 本申请涉及一种恶意文件检测方法、装置、电子装置及存储介质,该恶意文件检测方法包括:基于文件生成日志,按预设第一周期获取目标的第一特征数据;按预设时间窗口期对第一特征数据进行累积处理,得到第二特征数据;对第一特征数据和第二特征数据进行多维处理,得到目标特征数据;将目标特征数据输入训练完备的预测模型,得到多条预测结果,并将多条预测结果进行合并,得到目标预测结果;根据目标预测结果,判定目标特征数据对应的文件是否为恶意文件。通过本申请,解决了现有恶意文件检测技术无法检测出混淆型的恶意脚本文件,计算机、服务器等设备仍存在被恶意文件破坏风险问题,提高了恶意脚本文件的检测准确度,提高计算机等设备的安全性。
-
公开(公告)号:CN116227474A
公开(公告)日:2023-06-06
申请号:CN202310514835.8
申请日:2023-05-09
Applicant: 之江实验室
IPC: G06F40/247 , G06N20/00
Abstract: 本说明书公开了一种对抗文本的生成方法、装置、存储介质及电子设备,包括:获取用于生成对抗文本的各原始文本,根据预先训练的第一语言模型,确定各原始文本的特征向量,并对各原始文本聚类,得到指定数量的文本簇。然后,从各文本簇中确定代表文本,再确定各代表文本对应的初始对抗文本。然后,根据确定出的代表文本的原始关键词和初始对抗关键词之间的差异,从预设的各思维链提示模板中,确定目标思维链提示模板。之后,根据代表文本和代表文本的初始对抗文本,采用目标思维链提示模板,生成思维链提示文本。将思维链提示文本输入预先训练的第二语言模型,得到目标对抗文本。可以更加灵活地生成对抗文本,减少对抗文本的生成成本。
-
公开(公告)号:CN116630480B
公开(公告)日:2023-09-26
申请号:CN202310862442.6
申请日:2023-07-14
Applicant: 之江实验室
Abstract: 本发明涉及交互式文本驱动图像编辑的方法、装置和电子设备,方法包括获取图像样本并判断图像样本是否合规;将图像样本输入到图像逆向模型得到原始图像逆向特征;获取文本样本并判断文本样本是否合规;将文本样本输入到文本编码器中得到文本特征;将原始图像逆向特征和文本特征输入到多模态融合模型得到编辑图像特征;将编辑图像特征输入到图像生成器得到编辑后图像;询问用户是否继续输入文本样本,若继续,继续获取文本样本;否则输出最终编辑后图像。与现有技术相比,本发明放开了传统编辑场景对于输入文本内容的限制,可实现针对于同一张原始图像进行多次文本输入,渐进式修改对应图像区域,提高图像编辑方法灵活性。
-
公开(公告)号:CN116796829A
公开(公告)日:2023-09-22
申请号:CN202310945896.X
申请日:2023-07-31
Applicant: 之江实验室
IPC: G06N3/094 , G06N3/0985 , G06N3/0475 , G06N3/045 , G06T3/00 , G06V40/16 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/82 , G06F40/30
Abstract: 本发明涉及一种文本驱动人脸编辑的对抗攻击方法、装置和介质,方法包括获取图像样本和文本样本,图像样本包括原始图像和目标图像;基于文本样本,确定固定语义映射模型;将原始图像样本输入到图像逆向模型得到原始图像逆向特征;然后输入到固定语义映射模型,其输出与原始图像逆向特征加权组合得到编辑后图像逆向特征,加权因子为可优化超参数;根据编辑后图像逆向特征生成编辑后生成图像;判断是否收敛,并对加权因子收敛迭代优化,得到最终编辑后图像逆向特征从而生成最终编辑后生成图像。与现有技术相比,本发明具有保证了对抗样本的攻击有效性,增强了对抗干扰的不可见性,提高了对抗样本的图像质量等优点。
-
公开(公告)号:CN118195023A
公开(公告)日:2024-06-14
申请号:CN202311843820.2
申请日:2023-12-27
Applicant: 之江实验室
IPC: G06N20/00 , G06F21/62 , G06F18/214
Abstract: 本说明书公开了一种基于区块链的车联网去中心化联邦学习方法,区块链选择初始节点并初始化模型,初始节点随机选择邻近节点将模型传播;参与节点接收到模型后,先与本地模型进行融合,再使用本地数据进行训练,再将更新的模型随机传播给邻近节点,同时发送至委员会;委员会对收到的模型进行质量检测、共识上链;智能合约周期性自动触发执行并行序列模型聚合;任务发布者检测模型是否收敛,若未达到收敛要求,则重复执行上述步骤;学习任务结束,需求方可直接从区块链将模型下载至本地,利用本地数据完成预测。与传统联邦学习相比,本发明具有更好的隐私保护性、更低的通信和储存成本,能够更好地适配快速变化的车联网网络。
-
-
-
-
-
-
-
-
-