一种基于涡量和雷诺数映射关系的三维流场智能分类方法

    公开(公告)号:CN118171207A

    公开(公告)日:2024-06-11

    申请号:CN202410591155.0

    申请日:2024-05-13

    Abstract: 本发明公开了一种基于涡量和雷诺数映射关系的三维流场智能分类方法,其包括将三维流场中的流场属性集中的每个离散采样点定义为具有位置、时间和速度三个物理量,将三维涡量定义为速度的旋度;将三维涡量表征为二维涡量;推导出二维涡量与雷诺数的对应关系,得到三维流场分类标准;通过连续采样时间的二维涡量,计算得到二维涡量时间序列,并将其作为二维涡量智能分类模型的输入;将二维涡量时间序列作为二维涡量智能分类模型的训练样本并对其进行训练,得到训练好的二维涡量智能分类模型;将新的二维涡量时间序列输入训练好的二维涡量智能分类模型中,得到三维流场所属分类。本发明提高了三维流场的分类效率。

    一种基于涡量和雷诺数映射关系的三维流场智能分类方法

    公开(公告)号:CN118171207B

    公开(公告)日:2024-07-16

    申请号:CN202410591155.0

    申请日:2024-05-13

    Abstract: 本发明公开了一种基于涡量和雷诺数映射关系的三维流场智能分类方法,其包括将三维流场中的流场属性集中的每个离散采样点定义为具有位置、时间和速度三个物理量,将三维涡量定义为速度的旋度;将三维涡量表征为二维涡量;推导出二维涡量与雷诺数的对应关系,得到三维流场分类标准;通过连续采样时间的二维涡量,计算得到二维涡量时间序列,并将其作为二维涡量智能分类模型的输入;将二维涡量时间序列作为二维涡量智能分类模型的训练样本并对其进行训练,得到训练好的二维涡量智能分类模型;将新的二维涡量时间序列输入训练好的二维涡量智能分类模型中,得到三维流场所属分类。本发明提高了三维流场的分类效率。

Patent Agency Ranking