Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for reducing power consumption or error of a digital compass.
Abstract:
A mobile device configured to be used in a wireless communication network includes: an image capture device; at least one sensor configured to measure a first orientation of the mobile device; and a processor communicatively coupled to the image capture device and the at least one sensor and configured to: identify an object in an image captured by the image capture device; use a position of the mobile device to determine an actual location of the object relative to the mobile device; and use the actual location of the object relative to the mobile device and the image to determine a correction for the sensor.
Abstract:
A device for sensing a phenomenon using a dynamic measurement range includes: a sensing element configured to measure the phenomenon using a first measurement range and to provide an analog indication of a value of the phenomenon; an analog-to-digital converter (ADC) coupled to the sensing element and configured to convert the analog indication to a digital indication; and a processor coupled to the ADC and the sensing element and configured to analyze the digital indication to determine a second measurement range for the sensing element and to cause the sensing element to change from the first measurement range to the second measurement range for measurement of the phenomenon, the first measurement range being different than the second measurement range.
Abstract:
A navigation device includes a computer platform that includes a global positioning system (GPS) receiver operable to acquire and track a GPS signal, a processor assembly, and a memory. The memory includes at least one of last recorded Ephemeris and Almanac information, and a GPS velocity vector determination module operable to generate a velocity vector output in the absence of current Ephemeris based upon the tracked GPS signal and the last recorded GPS information. A method of vehicle navigation in the absence of current Ephemeris includes acquiring and tracking a GPS signal, retrieving from a memory a last recorded location of a vehicle, setting a dead reckoning startup location equal to the last recorded location, retrieving from a memory at least one of a last recorded Ephemeris and Almanac, determining a current velocity vector and determining a current location based upon the velocity vector and the dead reckoning startup location.
Abstract:
Apparatus and methods for calibrating dynamic parameters of a vehicle navigation system are presented. One method may include determining whether reference position data of a vehicle is available, and measuring composite accelerations of the vehicle. The method may further include generating distance and turn angle data based upon a wheel speed sensors data, computing distance and turn angle errors based upon the independent position data, and associating the distance and turn angle errors with composite accelerations. A second method presented includes calibrating an inertial navigation sensor within a vehicle navigation system. The second method may include determining reference position data and Inertial Navigation System (INS) data, aligning an IMU with the vehicle, and aligning the IMU with an Earth fixed coordinate system. The second method may further include computing the vehicle alignment with respect to a horizontal plane, and determining calibration parameters for distance sensors associated with the vehicle.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for reducing power consumption or error of a digital compass.
Abstract:
An apparatus and method for providing a direction based on an angle of a reference wall is provided. A mobile device uses an angle of a horizontal feature from an image to calibrate a sensor and future sensor measurements. The angle of the horizontal feature is determined by image processing and this angle is mapped to one of four assumed parallel or perpendicular angles of an interior of a building. A sensor correction value is determined from a difference between the sensor-determined angle and the image-processing determined angle. The image processing determined angle is assumed to be very accurate and without accumulated errors or offsets that the sensor measurements may contain.
Abstract:
A device for viewing celestial and terrestrial data having a housing with a reference axis, a database disposed in the housing and containing celestial and terrestrial data, a GPS receiver operatively coupled to the database and configured to receive a GPS signal, a processor operatively coupled to the GPS receiver and the database and configured to determine a user's location from the GPS signal, a sensor operatively coupled to the processor and adapted to provide the processor with a rotational angle representing the orientation of the housing relative to the reference axis, and a display unit operatively coupled to the processor and displays celestial and/or terrestrial data to the user corresponding to the rotational angle of the housing.