Abstract:
Disclosed are a light-emitting device for digital control of color temperature modulation and its application. The light-emitting device is electrically connected to a wall switch and includes a DIP switch, first LEDs, second LEDs and a control module. The control module is electrically connected to the above components and contains a truth table. The truth table includes at least a first mode, second mode, third mode and a memory and automatically switch mode, and a digital switching is accomplished by correlating the DIP switch to the truth table. In the memory and automatically switch mode, the first to third mode color temperatures are sequentially switched and controlled by turning on or off the wall switch according to the truth table information. The light-emitting device may be applied to light fixtures or mirror products to improve the convenience of use.
Abstract:
A secondary-side bucking and current-stabilizing flyback power converter adopts a dual-stage isolated circuit architecture and outputs a constant output current to drive a low-power LED module, and its primary stage adopts a flyback circuit architecture with a primary regulated voltage, and its secondary stage adopts of a buck circuit architecture of the current stabilizer, so that after the primary stage converts the constant voltage, the current stabilizer senses the load effect of the output current at the LED module to regulate the output cycle and maintain the total output of the output current constant and reduce the ripple amplitude, so as to achieve a non-strobe output result and improve the illumination effect of the LED module.
Abstract:
Disclosed is a purely resistive dimming circuit for driving LEDs to emit light and support an LED dimming function. The LEDs are divided into a first string and a second string connected in series with each other. The purely resistive dimming circuit is respectively and electrically coupled to an anode terminal of the first string and an anode terminal of the second string by a driving resistor and a current limiting resistor which are connected in series with each other. The resistance of the driving resistor restricts the LEDs to emit light at different stages to enhance the working efficiency of circuits, while using the property of the current limiting resistor to limit the overvoltage current, so as to achieve a constant power operating effect.
Abstract:
The present invention relates to an LED drive circuit, which includes a protection unit, which is connected to an AC power supply; a rectification filter unit, which is electrically connected to the protection unit; a control unit, which has an end electrically connected to the rectification filter unit; an LED driving unit, which includes an LED, a first capacitor, and a transistor, the LED being connected in parallel with the first capacitor, the LED including a positive terminal and a negative terminal, the positive terminal of the LED being electrically connected to the rectification filter unit and the control unit; and a current detection feedback unit, which is arranged between the LED driving unit and the control unit. As such, the current detection feedback unit forms a protection circuit to prevent an increase of power caused by excessively high input voltage from an AC power supply.
Abstract:
Disclosed are an LED light emitting device and its manufacturing method. A blue LED chip specification is selected, a green phosphor and the blue LED chip are used to determine a green light frame on the CIE1931 chromaticity coordinates and a red phosphor together with a blue LED chip are used to determine a red light frame on the CIE1931 chromaticity coordinates, and a predetermined straight line passing through the color temperature target frame is selected, and both end points of the predetermined straight line fall within the green light frame and the red light frame, so as to determine the concentration of the green phosphor and the red phosphor, and the green and red phosphors and a blue LED chip are packaged to form a first LED and a second LED, and at least one first LED and at least one second LED are installed on a substrate.
Abstract:
An auto-sensing dimming lamp guides ambient light to a sensor installed in a lamp cover and at a base through a light pipe. The auto-sensing dimming lamp automatically adjusts a light emission status of LED light sources according to the ambient light by a processor installed at the base. The processor includes a pass filter unit and a modulation unit, and the pass filter unit receives a detected signal waveform of the sensor and a driving voltage waveform of the LED light sources.
Abstract:
An LED lead frame mounted on a platform of a lightbulb includes a metal polarity substrate, a metal retaining substrate and a casing for partially covering the metal polarity substrate and the metal retaining substrate. The metal retaining substrate is a sheet bent into a disposing portion and a carrying portion, and an included angle θ1 is defined between the portions, and an abutting surface of the disposing portion abuts the platform, and a portion of the carrying portion not covered by the casing is provided for installing at least one LED chip. The metal polarity substrate is bent to form an included angle θ2, and θ1=θ2, and 93°≦θ1≦130°. The casing has a support member formed on the casing and protruded in a direction opposite to the direction of bending the metal retaining substrate. The LED lead frame enhances the illumination angle and light uniformity of the lightbulb.
Abstract:
An LED driver circuit for supplying a TRIAC holding current by using a controllable current source has a single-stage power factor correction circuit architecture, and the circuit receives an input voltage received by a conversion module of the controllable current source to form an operating current for driving an LED light source to emit light and monitoring the change of the input voltage by a control chip, and adopts a switching method of a fixed cut-off time of a switch unit, so that the controllable current source outputs a constant operating current in a standard peak value to achieve the constant current status during the operation of the LED light source while assuring the operating current is always greater than a holding current required by the TRIAC element when the TRIAC element is conducted.
Abstract:
A ceiling lamp adopting a non-separating driver circuit includes a conversion module and a control module. The conversion module converts an input voltage into an operating voltage to drive the LEDs and forming a driving current, and the control module monitors the operating voltage and the driving current to adjust the operating cycle of the conversion module, change the output voltage value of the operating voltage, and linearly change the driving current at a constant current state. The conversion module just executes the power conversion for one time to provide the driving power of the LEDs instead of using the conventional driving method that executes a two-stage power conversion by a separating power converter and a negative booster of the conventional ceiling lamp. Therefore, the ceiling lamp adopting a non-separating driver circuit is capable of lowering the circuit cost and improving the operating efficiency.