Abstract:
The present invention provides an organic/inorganic composite containing an inorganic phase dispersed in an organic polymer, the inorganic phase comprises one or more metal atoms that are coordinated to at least one rare earth metal atom via oxygen. The composite contains at least 5 mass % of rare earth metal. This rare earth metal is dispersed in the inorganic phase.
Abstract:
An oxygen sensor includes a metalloporphyrin for detecting oxygen levels. The oxygen sensors may also include a light source and a detector. The sensors are configured to measure changes in spectra in response to the redox reaction. They can detect a variety of samples for presence and changes in oxygen concentration in both solution and gaseous form.
Abstract:
The present technology provides a nanoparticle detector that includes a nanoparticle collector that is configured to collect a volume of air that includes nanoparticles and a light source that is configured to transmit light through the volume of air. The nanoparticle detector further includes a first light-receiving element that is configured to receive at least a portion of the transmitted light and to detect characteristics of the nanoparticles within the volume of air based on scattering properties of the transmitted light.
Abstract:
A cell cultivating platform includes a substrate having a surface, at least one actuator moveable relative to the substrate, and a deformable material layer positioned above at least a portion of the supporting surface and the at least one actuator. The deformable material layer positioned opposite the substrate surface includes a biocompatible supportive surface suitable for supporting cultivated cells. The supportive surface deforms or otherwise deflects in response to activation of the at least one actuator, effectively releasing at least a portion of the cultured cells from the supportive surface. Suitable actuators include piezoelectric actuators that can be selectively energized according to one or more patterns to facilitate separation of cells from the supportive surface. Such activation cycles can be repeated.
Abstract:
The present invention provides an organic/inorganic composite containing a rare earth metal or/and Period IV transition metal in which the aforementioned rare earth metal or/and Period IV transition metal is doped at a high concentration, and control of quenching and optical transparency are assured thereby; and an optical amplifier, a light control optical element, and luminescent device utilizing the same. The organic/inorganic composite containing a rare earth metal or/and Period IV transition metal is one in which at least one species of rare earth metal or/and Period IV transition metal is dispersed in an organic polymer, with the aforementioned composite containing an optically transparent organic polymer and an inorganic dispersion phase comprising: (1) a rare earth metal and (2) another element coordinated thereto via an oxygen atom(s).
Abstract:
The present invention provides an organic/inorganic composite containing a rare earth metal or/and Period IV transition metal in which the aforementioned rare earth metal or/and Period IV transition metal is doped at a high concentration, and control of quenching and optical transparency are assured thereby; and an optical amplifier, a light control optical element, and luminescent device utilizing the same. The organic/inorganic composite containing a rare earth metal or/and Period IV transition metal is one in which at least one species of rare earth metal or/and Period IV transition metal is dispersed in an organic polymer, with the aforementioned composite containing an optically transparent organic polymer and an inorganic dispersion phase comprising: (1) a rare earth metal and (2) another element coordinated thereto via an oxygen atom(s). The inorganic dispersion phase in which another metal coordinates to rare earth metal or/and Period IV transition metal via an oxygen atom(s) preferably has an average particle size ranging from 0.1 to 1000 nm. Preferably, the ratio of rare earth metal or/and Period IV transition metal when mathematically converted to solid content is 90 mass % or less of the total mass of the organic polymer and the rare earth metal dispersion phase.
Abstract:
A metal particle dispersion liquid compries: a compound including a sulfur atom; metal particles whose diameter ranges from 1 to 100 nm and made of a material including a precious metal material; and a dispersion medium. The metal particles is covered by the compound.
Abstract:
Embodiments described herein generally relate to re-using the energy of natural light. In some examples, a lighting unit is described. An example lighting unit can include a multiple number of bound light-conductive members. A long-lasting phosphorescent material can be dispersed between the multiple number of bound light-conductive members. A luminance of the lighting unit can be at least several thousand cd/m2.
Abstract:
A food product management system comprises a database configured to store data describing a plurality of relationships, each of the plurality of relationships defining a relationship between a producer, a food product, and a combination of stable isotopes, the food products being associated with the combinations of the stable isotopes that are different from producer to producer; a terminal device configured to receive results of an analysis of the combination of stable isotopes contained in one of the food products; and a management computer operatively connected to the database and the terminal device, and configured to receive the results of the analysis from the terminal device and to identify the producer of the one of the food products with reference to the database based on the results of the analysis.
Abstract:
The present technology provides a nanoparticle detector that includes a nanoparticle collector that is configured to collect a volume of air that includes nanoparticles and a light source that is configured to transmit light through the volume of air. The nanoparticle detector further includes a first light-receiving element that is configured to receive at least a portion of the transmitted light and to detect characteristics of the nanoparticles within the volume of air based on scattering properties of the transmitted light.