Abstract:
A method of manufacturing an electronic device includes a first bonding step of bonding an electronic component and a first member together via a first bonding layer and a second bonding step of bonding the first member and a second member together via a second bonding layer after the first bonding step. The second bonding layer includes a bonding material layer made of a bonding material. In the second bonding step, with the bonding material interposed between the first and second members before being bonded together, the bonding material is heated and melted using light traveling through the first member. The first member is made of Si. The light has a wavelength in the range of 1100 to 15000 nm.
Abstract:
A dielectric composition includes a main phase and segregation phases each including RE (at least one rare earth element). The main phase includes a main component having a perovskite crystal structure of ABO3 (A is one or more selected from Ba, Sr, and Ca, and B is one or more selected from Ti, Zr, and Hf). The segregation phases are classified into first segregation phases whose atomic ratio of Si to RE is 0 or more and 0.20 or less and second segregation phases whose atomic ratio of Si to the RE is more than 0.20. 0≤S1/S2≤0.10 is satisfied on a cross section of the dielectric composition, where S1 is an area ratio of the first segregation phases, and S2 is an area ratio of the second segregation phases. An atomic ratio of Si to RE in the second segregation phases is 0.80 or less on average.
Abstract:
A ferrite composition includes a main component and a sub-component. The main component includes 10.0 to 38.0 mol % of a Fe compound in terms of Fe2O3, 3.0 to 11.0 mol % of a Cu compound in terms of CuO, 39.0 to 80.0 mol % (excluding 39.0 mol %) of a Zn compound in terms of ZnO, and a balance of a Ni compound. The sub-component includes 10.0 to 23.0 parts by weight of a Si compound in terms of SiO2, 0 to 3.0 parts by weight (including 0 parts by weight) of a Co compound in terms of Co3O4, and 0.1 to 3.0 parts by weight of a Bi compound in terms of Bi2O3 with respect to 100 parts by weight of the main component.
Abstract:
A dielectric ceramic composition has good characteristics even under the high electric field intensity, and particularly good IR characteristic and the high temperature accelerated lifetime. The dielectric ceramic composition has a main component having a perovskite type compound shown by a compositional formula (Ba1-x-ySrxCay)m(Ti1-zZrz)O3, a first sub component having oxides of a rare earth element R, a second sub component as a sintering agent, wherein the dielectric particles has dielectric particles having high diffusion rate of the rare earth element, preferably of a complete solid solution particle, and when a concentration of Ti atom in the diffusion phase is 100 atom %, then an average concentration of the rare earth element R in the diffusion phase is 5 atom % or more, and an average concentration of Zr in the diffusion phase is 10 atom % or more.
Abstract:
A ceramic electronic component includes a dielectric layer and an electrode layer. The dielectric layer contains barium titanate and yttrium. The dielectric layer contains dielectric particles and Y—Ti segregation particles. An area ratio occupied by the Y—Ti segregation particles is 1.3% or less on a cross section of the dielectric layer.
Abstract:
A dielectric ceramic composition contains dielectric particles containing a main component represented by a composition formula (Ba1-x-ySrxCay)m(Ti1-zZrz)O3 and grain boundaries present between the dielectric particles. The values of m, x, y, and z in the composition formula are all molar ratios. In the composition formula, 0.9≤m≤1.4, 0≤x
Abstract:
A dielectric ceramic composition having improved insulation specific resistance and a highly accelerated lifetime. The dielectric ceramic composition includes a dielectric particle having a core-shell structure including a main component expressed by a general formula ABO3, where A is Ba and the like, and B is Ti and the like), and a rare earth element component R, in which a shell part of the core-shell structure has an average rare earth element concentration C of 0.3 atom % or more. The rare earth element has a specified concentration gradient or concentration variation.
Abstract:
A dielectric ceramic composition having good characteristic even under high electric field intensity, and particularly good IR characteristic and high temperature accelerated lifetime. The present invention is a dielectric ceramic composition comprising, a main component comprising a perovskite type compound shown by a compositional formula (Ba1-x-ySrxCay)m(Ti1-zZrz)O3, a first sub component comprising oxides of a rare earth element, a second sub component as a sintering agent, wherein said dielectric ceramic composition is a complete solid solution particle wherein the rare earth element is solid dissolved to entire dielectric particle, or a core-shell particle having high ratio of the diffusion phase, and comprises the dielectric particle having 5 to 20 atom % of the average concentration of the rare earth element in the diffusion phase, and having uniform concentration distribution of the rare earth element in the diffusion phase.
Abstract:
A ceramic electronic component includes a dielectric layer and an electrode layer. The dielectric layer contains a plurality of ceramic particles and grain boundary phases present therebetween. A main component of the ceramic particles is barium titanate. An average thickness of the grain boundary phases is 1.0 nm or more. A thickness variation σ of the grain boundary phases is 0.1 nm or less.
Abstract:
A method of manufacturing an electronic device includes a positioning step of positioning a first member supporting a laser diode with respect to a second member having a waveguide, a bonding step of bonding the first member and the second member together, and a checking step of checking the accuracy of positioning of the first member with respect to the second member. In the positioning step, the laser diode is energized to allow laser light to be emitted, and the laser light is allowed to be incident on the incidence end of the waveguide. In the bonding step, a bonding material is melted by irradiating the first member with heating light while the laser diode is not energized. In the checking step, the laser diode is energized again.