Abstract:
A method and system is developed that provides a confidence measure of a prediction of a fault in a gas turbine engine. The confidence measure is developed based upon evaluating the results of a plurality of past predictions and comparing them to an actual fault.
Abstract:
A method and system is developed that provides a confidence measure of a prediction of a fault in a gas turbine engine. The confidence measure is developed based upon evaluating the results of a plurality of past predictions and comparing them to an actual fault.
Abstract:
A method for modeling the performance of a gas turbine engine is provided. The method includes the steps of: 1) providing a processor; 2) inputting flight condition parameter data and engine output parameter data into a gas turbine engine model operating on the processor, which model includes a physics-based engine model that uses the flight condition parameter data to produce estimated engine output parameter data, and determines residuals from the engine output parameter data and the estimated engine output parameter data; 3) partitioning the flight condition parameter data and residuals into training data and testing data; 4) performing a correlation reduction on the training data, which analysis produces correlation adjusted training data; 5) performing an orientation reduction on the correlation adjusted training data, which reduction produces orientation adjusted training data; 6) reviewing the orientation adjusted training data relative to at least one predetermined criteria, and iteratively repeating the steps of performing a correlation reduction and an orientation reduction using the orientation adjusted training data if the criteria is not satisfied, and if the criteria is satisfied outputting the orientation adjusted training data; 7) producing estimated corrections to the orientation adjusted training data using one or more neural networks; 8) evaluating the neural adjusted data using the partitioned testing data; and 9) modeling the performance of the gas turbine using the estimated corrections to the orientation adjusted training data.
Abstract:
A method of operating and a fault diagnosis system compares readings to predicted faults using a model-based component, and a database of previous actual fault examples. A predicted fault is provided to an output based upon a combination of both the model-based component and the actual fault examples.
Abstract:
A method for modeling the performance of a gas turbine engine is provided. The method includes the steps of: 1) providing a processor; 2) inputting flight condition parameter data and engine output parameter data into a gas turbine engine model operating on the processor, which model includes a physics-based engine model that uses the flight condition parameter data to produce estimated engine output parameter data, and determines residuals from the engine output parameter data and the estimated engine output parameter data; 3) partitioning the flight condition parameter data and residuals into training data and testing data; 4) performing a correlation reduction on the training data, which analysis produces correlation adjusted training data; 5) performing an orientation reduction on the correlation adjusted training data, which reduction produces orientation adjusted training data; 6) reviewing the orientation adjusted training data relative to at least one predetermined criteria, and iteratively repeating the steps of performing a correlation reduction and an orientation reduction using the orientation adjusted training data if the criteria is not satisfied, and if the criteria is satisfied outputting the orientation adjusted training data; 7) producing estimated corrections to the orientation adjusted training data using one or more neural networks; 8) evaluating the neural adjusted data using the partitioned testing data; and 9) modeling the performance of the gas turbine using the estimated corrections to the orientation adjusted training data.