Abstract:
A mounting rack structure includes a rack body having a plurality of downward extended supporting legs, each of which is provided near a distal end with an mounting hole; a plurality of mounting hole adapters; and a plurality of fastening elements. The mounting hole adapter includes at least one vertical extension portion with a first retaining flange and a central passage having at least one second retaining flange formed therearound; and is assembled to the mounting hole with the first retaining flange firmly pressed against one side of the supporting leg. The fastening element can be extended through the central passage of the mounting hole adapter to firmly lock the supporting leg and accordingly the rack body to a heat-generating unit. With the mounting hole adapter, the mounting rack structure can be used with different types of fastening elements to save the cost for making different molds.
Abstract:
A finned air-guiding heat-dissipating structure includes a heat sink having heat-dissipating fins arranged at intervals. At least one heat-dissipating channel is formed between the heat-dissipating fins. The heat-dissipating fins form an intake side and a first exhaust side and a second exhaust side in communication with the intake side through the heat-dissipating channels. The first exhaust side and the second exhaust side are located on both ends of the intake side and on both sides of the heat sink. A first exhaust trough and a second exhaust trough are provided on the other two sides of the heat sink and in communication with the intake side through the heat-dissipating channels. The heat sink is connected to a fan to form a heat-dissipating module. With this arrangement, the heat sink can guide airflow toward plural sides, so that the heat can be dissipated outside rapidly to achieve an excellent heat-dissipating effect.
Abstract:
A stress equalized heat sink unit includes a radiating fin assembly having a plurality of radiating fins and a stress equalizing element. A vertical receiving hole extends from a top of the radiating fin assembly to a predetermined depth. The stress equalizing element is positioned on the bottom of the receiving hole with one side facing away from the bottom of the receiving hole that serves as a pressure receiving face. When a tightening device fitted on fin assembly applies a downward pressure on the pressure receiving face, the applied pressure is uniformly dispersed via the pressure receiving face and the radiating fins to avoid deformation of the radiating fins due to stress concentration.
Abstract:
A heat radiating unit in the form of a heat sink includes a contact section arranged on a central portion of an end face of the heat sink for contacting with a heat source, and having more than one extension plate outward extended therefrom; a first heat-dissipating section composed of multiple curved radiation fins outward extended from two opposite sides of the contact section to provided increased heat radiating areas; and a second heat-dissipating section composed of multiple straight fins outward extended from another two opposite sides of the contact section and outer surfaces of the extension plates. The contact section conducts heat generated by the heat source to the first and second heat-dissipating sections, through which airflow produced by a cooling fan flows to carry the heat away from the heat sink in multiple directions to achieve enhanced heat-dissipating effect.
Abstract:
A heat radiator is in the form of a rectangular body having two opposite longer sides and two opposite shorter sides, and includes a contact section located at an end surface of the heat radiator for contacting with a heat source and having at least one extension wall outward extended therefrom to divide the heat radiator into a first heat-dissipating zone, which consists of a plurality of curved radiation fins outward extended from the contact section toward the two longer sides, and a second heat-dissipating zone, which consists of a plurality of straight or curved radiation fins outward extended from the contact section and the extension wall toward the two shorted sides. These radially outward extended radiation fins not only provide increased heat radiating areas, but also guide airflow produced by a cooling fan to smoothly flow therethrough to carry heat away from the heat radiator in different directions.
Abstract:
A method of assembling thermal module includes steps of providing a first heat dissipation member and a second heat dissipation member, and aiming a section of the first heat dissipation member at a section of the second heat dissipation member, which section of the first heat dissipation member is to be assembled with the section of the second heat dissipation member and driving the first heat dissipation member to connect with the second heat dissipation member by means of striking the first heat dissipation member into the second heat dissipation member. By means of the method, the thermal module can be assembled at higher efficiency. Moreover, the manufacturing process of the thermal module is simplified.
Abstract:
A radiating fin and a method of manufacturing the same are disclosed. The radiating fin includes a main body having a first side and an opposite second side, and being provided with at least one through hole to extend between the first and the second side for a heat pipe to extend therethrough; and at least one extension being formed on at least one of the first and the second side of the main body to locate around the at least one through hole and axially project from the main body. The extension is crimped to form a plurality of circumferentially alternate ridge portions and valley portions for tightly pressing against an outer surface of the heat pipe, so as to firmly bind the radiating fin to the heat pipe. A thermal module can be formed by sequentially binding a plurality of the radiating fins to the heat pipe.
Abstract:
A heat-dissipation unit includes a base and a plurality of radiating fins. The base has a plurality of grooves formed thereon, and each of the grooves has an open top and closed bottom. The radiating fins respectively have a heat-radiating zone and a bent zone. When a pressure is applied onto the bent zones, the bent zones respectively form an assembling section in the grooves to tightly fit therein. With the above arrangements, the radiating fins can be firmly locked to the base without the need of welding, so that the manufacturing cost is reduced and the problem of a damaged base due to assembling can be avoided. A method of manufacturing the above-described heat-dissipation unit is also disclosed.
Abstract:
A mounting rack structure includes a rack body having a plurality of downward extended supporting legs, each of which is provided near a distal end with an mounting hole; a plurality of mounting hole adapters; and a plurality of fastening elements. The mounting hole adapter includes at least one vertical extension portion with a first retaining flange and a central passage having at least one second retaining flange formed therearound; and is assembled to the mounting hole with the first retaining flange firmly pressed against one side of the supporting leg. The fastening element can be extended through the central passage of the mounting hole adapter to firmly lock the supporting leg and accordingly the rack body to a heat-generating unit. With the mounting hole adapter, the mounting rack structure can be used with different types of fastening elements to save the cost for making different molds.
Abstract:
A radiating fin assembly includes a plurality of alternately stacked first radiating fins and second radiating fins, such that a V-shaped recession is formed between any two adjacent first and second radiating fins. The V-shaped recessions are defined on at least one of two longitudinal sides of the radiating fin assembly and include a plurality of split spaces, first widened spaces, and second widened spaces. The split spaces are formed at a bottom portion of the V-shaped recessions, and the first and the second widened spaces are formed at two opposite ends of the split spaces. The radiating fin assembly can be associated with at least one heat pipe and a base to form a thermal module. With the V-shaped recessions, the radiating fin assembly and the thermal module can have widened airflow inlets, shortened airflow paths, reduced airflow pressure drop and flowing resistance, and accordingly upgraded heat dissipating efficiency.