Abstract:
A method for driving a display panel, a driving chip and a display device are provided to ameliorate image retention and improve the display performance. The method includes: monitoring a static pattern in a first display image and defining an area where the static pattern is located as a first area when a display brightness value of the area and a display brightness value of an area where a background pattern thereof is located satisfy a first preset condition; and controlling the static pattern to move during displaying of the first display image, or adjusting grayscale values of sub-pixels in a second area during displaying of a second display image, to which the first display image jumps, the second area being an area, corresponding to the first area in the second display image and having a display brightness value lower than a display brightness value of the first area.
Abstract:
A touch apparatus, an electronic device, and a method for preparing the touch apparatus are provided. The touch apparatus includes: a substrate and a cover plate arranged opposite to each other, a first touch sensor, and a second touch sensor. The substrate includes a display region including a first display region and a second display region arranged in a first direction. The first touch sensor is arranged on the side of the cover plate towards the substrate. The second touch sensor is arranged on the side of the substrate towards the cover plate. The second touch sensor is arranged in a different layer from the first touch sensor. The first touch sensor has a first projection on the substrate in a second direction, which covers the first display region. The second touch sensor has a second projection on the substrate in the second direction, which covers the second display region.
Abstract:
The present invention provides a mask, a display panel, a method for manufacturing a display panel, and a display device. The display panel has a hollow region and a display region surrounding the hollow region. The display panel includes a plurality of organic light-emitting devices arranged only in the display region. Each of the plurality of organic light-emitting devices includes an anode layer, a cathode layer, a light-emitting layer and a functional layer. The functional layer includes a plurality of uneven portions.
Abstract:
Provided is a touch panel. The touch panel includes a first substrate and a second substrate disposed opposite to each other; a plurality of stacks separated by a pixel definition layer and each including an anode block and an organic light emitting block; a plurality of cathodes; a plurality of strip-shaped first touch electrodes arranged in a first direction and each extending in a second direction; and a plurality of strip-shaped second touch electrodes arranged in the second direction and each extending in the first direction. The first touch electrodes may arranged on the same layer with the anodes or arranged on the same layer with the cathodes, and are directly on the pixel definition layer. A projection of the strip-shaped first touch electrode is located between projections of two adjacent cathodes.
Abstract:
The present disclosure provides a display panel and a manufacturing method therefor, and a display device, and the display panel includes a first substrate and a second substrate disposed opposite to the first substrate; an organic light emitting layer disposed between the first substrate and the second substrate, wherein the organic light emitting layer includes a planar cathode layer; a planar cathode protection layer disposed on the cathode layer; and a first touch layer disposed on the cathode protection layer. With the technical solutions according to the present disclosure, the first touch layer is formed by evaporation processes just like the organic light emitting layer, so that the manufacture steps of the display panel are reduced as compared to forming the first touch layer by a photo etching process. Further, if the evaporation mask instead of the photo etching masks is used during the manufacture, the production cost is reduced.
Abstract:
Provided are a driving method and driving device of a display panel, and a display device. A sub-display region in which gray scale values of first sub-pixels are 0 and gray scale values of second sub-pixels are less than a first preset gray scale value is determined as a first sub-display region, and a sub-display region in which not all of the gray scale values of the first sub-pixels are 0 and not all of the gray scale values of the second sub-pixels are less than the first preset gray scale value is determined as a second sub-display region. In a reset stage, a first reset signal is provided to an anode of an organic light emitting element of a sub-pixel of the first sub-display region and a second reset signal is provided to an anode of an organic light emitting element of a sub-pixel of the second sub-display region.
Abstract:
An organic light-emitting display panel has a display region including a fingerprint recognition region and light-emitting devices for displaying image, the display panel includes a driving device layer, an anode layer, a pixel definition layer, an organic light-emitting layer, and a cathode layer sequentially stacked; and an optical fingerprint recognition sensor located in the fingerprint recognition region and located at a side of the driving device layer away from the anode layer; the pixel definition layer includes sub-pixel openings corresponding to the light-emitting devices, each light-emitting device includes an anode corresponding to one sub-pixel opening, the anode being located in the anode layer and overlapping with a corresponding sub-pixel opening, the organic light-emitting layer is located in each sub-pixel opening, and the cathode layer overlaps with each sub-pixel opening; in the fingerprint recognition region, at least part of the light-emitting devices each have an anode being a transparent electrode.
Abstract:
The present disclosure provides a display panel, a display device, and a method for driving a display device. The display panel has a display region, a partial region of which is reused as a photographing photosensitive region. The display panel includes: a first substrate; a second substrate disposed opposite to the first substrate; a plurality of pixel units disposed in the display region, and a plurality of photosensitive elements disposed in the photographing photosensitive region. The first substrate is located on a side of the second substrate facing a light-emitting surface, the plurality of pixel units is formed on the second substrate, each of the plurality of pixel units includes a pixel circuit and a light-emitting element, and a planarization layer is arranged between the pixel circuit and the light-emitting element, and the plurality of photosensitive elements is located on a side of the planarization layer facing the first substrate.
Abstract:
A method to improve display performance at edges of a circular display screen is provided. The method comprises determining an edge area and a central area of the circular display screen, the edge area surrounding the central area; along a direction from a geometric center of the circular display screen to the edge area of the circular display screen, dividing the edge area into n display regions each having a different luminance-level, where n is a positive integer larger than 1; and according to luminance of pixels in the central area and the luminance-level of each of the n display regions, adjusting the luminance of the pixels in each of the n display regions to corresponding target luminance. Along the direction from the geometric center to the edge area of the circular display screen, the corresponding target luminance of the pixels in the n display regions sequentially decreases.
Abstract:
Provided is a touch panel. The touch panel includes a first substrate and a second substrate disposed opposite to each other; a plurality of stacks separated by a pixel definition layer and each including an anode block and an organic light emitting block; a plurality of cathodes; a plurality of strip-shaped first touch electrodes arranged in a first direction and each extending in a second direction; and a plurality of strip-shaped second touch electrodes arranged in the second direction and each extending in the first direction. The first touch electrodes may arranged on the same layer with the anodes or arranged on the same layer with the cathodes, and are directly on the pixel definition layer. A projection of the strip-shaped first touch electrode is located between projections of two adjacent cathodes.