Abstract:
System(s), method(s), and device(s) that can aggregate all or substantially all data traffic, such as wireless data traffic egressing to the Internet, at one or more regional aggregation hubs and capture a portion(s) of data traffic associated with a subscriber(s) of interest at the regional hub(s) are presented. Data traffic associated with subscribers can be aggregated at an access concentrator(s) and respective public Internet Protocol (IP) addresses can be given to respective subscribers. The data traffic can be aggregated at the regional hub(s) and data traffic associated with a subscriber(s) of interest can be identified based at least in part on the public IP address(es) of the respective subscriber(s) of interest. The data traffic associated with a subscriber(s) of interest can be captured and provided to a consumer (e.g., law enforcement, service provider) who desires such data.
Abstract:
A method of forming a semiconductor device, the method comprising providing a semiconductor layer, and providing a first layer of a first metal on the semiconductor layer. A second layer may be provided on the first layer of the first metal. The second layer may include a layer of silicon and a layer of a second metal, and the first and second metals may be different. The first metal may be titanium and the second metal may be nickel. Related devices, structures, and other methods are also discussed.
Abstract:
Methods, systems, and computer-readable media provide for verifying a lawful interception system. A first file and a second file are received. The first file is formed by recording data traffic at a computer as the data traffic generated at the computer is transmitted from the computer to a remote network via a broadband remote access server (BRAS), saving the recorded data traffic as a first packet capture and flat file export (PCAP) file, and exporting packet summary lines from the first PCAP file. The second file is formed by intercepting the data traffic as the data traffic egresses from a mediation system to a law enforcement agency (LEA) system, saving the intercepted data traffic as a second PCAP file, and exporting packet summary lines from the second PCAP file. The first file is compared with the second file to verify an accuracy of the mediation system.
Abstract:
Methods, systems and computer program products for integrating data in a communications network received at provider (P) routers from provider edge (PE) routers having a plurality of different configurations are provided. Global collection and export parameters for the P routers are configured. A collector associated with the P routers is configured to maintain a netflow exported data table for the P routers based on the global collection and export parameters received from the P routers. P router text files are configured. The P router text files identify all P routers associated with the collector using Internet protocol (IP) addresses associated with each of the P routers. A destination PE router is located for a selected P router based on IP addresses in the P router text file associated with the selected P router such that the interface IP address of the selected P router is matched with the open shortest path first (OSPF) router identification of the destination PE router.
Abstract:
Methods of forming semiconductor devices are provided by forming a semiconductor layer on a semiconductor substrate. A mask is formed on the semiconductor layer. Ions having a first conductivity type are implanted into the semiconductor layer according to the mask to form implanted regions on the semiconductor layer. Metal layers are formed on the implanted regions according to the mask. The implanted regions and the metal layers are annealed in a single step to respectively activate the implanted ions in the implanted regions and provide ohmic contacts on the implanted regions. Related devices are also provided.
Abstract:
An anneal of a gate recess prior to formation of a gate contact, such as a Schottky contact, may reduce gate leakage and/or provide a high quality gate contact in a semiconductor device, such as a transistor. The use of an encapsulation layer during the anneal may further reduce damage to the semiconductor in the gate recess of the transistor. The anneal may be provided, for example, by an anneal of ohmic contacts of the device. Thus, high quality gate and ohmic contacts may be provided with reduced degradation of the gate region that may result from providing a recessed gate structure as a result of etch damage in forming the recess.
Abstract:
Disclosed are a switch mode power amplifier and a field effect transistor especially suitable for use in a switch mode power amplifier. The transistor is preferably a compound high electron mobility transistor (HEMT) having a source terminal and a drain terminal with a gate terminal therebetween and positioned on a dielectric material. A field plate extends from the gate terminal over at least two layers of dielectric material towards the drain. The dielectric layers preferably comprise silicon oxide and silicon nitride. A third layer of silicon oxide can be provided with the layer of silicon nitride being positioned between layers of silicon oxide. Etch selectivity is utilized in etching recesses for the gate terminal.
Abstract:
A monolithic electronic device includes a first nitride epitaxial structure including a plurality of nitride epitaxial layers. The plurality of nitride epitaxial layers include at least one common nitride epitaxial layer. A second nitride epitaxial structure is on the common nitride epitaxial layer of the first nitride epitaxial structure. A first plurality of electrical contacts is on the first epitaxial nitride structure and defines a first electronic device in the first nitride epitaxial structure. A second plurality of electrical contacts is on the first epitaxial nitride structure and defines a second electronic device in the second nitride epitaxial structure. A monolithic electronic device includes a bulk semi-insulating silicon carbide substrate having implanted source and drain regions and an implanted channel region between the source and drain regions, and a nitride epitaxial structure on the surface of the silicon carbide substrate. Corresponding methods are also disclosed.
Abstract:
A method of fabricating an integrated circuit on a silicon carbide substrate is disclosed that eliminates wire bonding that can otherwise cause undesired inductance. The method includes fabricating a semiconductor device in epitaxial layers on a surface of a silicon carbide substrate and with at least one metal contact for the device on the uppermost surface of the epitaxial layer. The opposite surface of the substrate is then ground and polished until it is substantially transparent. The method then includes masking the polished surface of the silicon carbide substrate to define a predetermined location for at least one via that is opposite the device metal contact on the uppermost surface of the epitaxial layer and etching the desired via in steps. The first etching step etches through the silicon carbide substrate at the desired masked location until the etch reaches the epitaxial layer. The second etching step etches through the epitaxial layer to the device contacts. Finally, metallizing the via provides an electrical path from the first surface of the substrate to the metal contact and to the device on the second surface of the substrate.
Abstract:
Systems and methods are disclosed for providing network testing. The disclosed systems and methods may include connecting to at least one element within a network. Furthermore, the disclosed systems and methods may include performing a test on the network through at least one element. The test may be associated with at least one addressable device connected to the network. In addition, the disclosed systems and methods may include analyzing data associated with the test.