Abstract:
A semiconductor device has a semiconductor wafer and a first conductive layer formed over the semiconductor wafer as contact pads. A first insulating layer formed over the first conductive layer. A second conductive layer including an interconnect site is formed over the first conductive layer and first insulating layer. The second conductive layer is formed as a redistribution layer. A second insulating layer is formed over the second conductive layer. An opening is formed in the second insulating layer over the interconnect site. The opening extends to the first insulating layer in an area adjacent to the interconnect site. Alternatively, the opening extends partially through the second insulating layer in an area adjacent to the interconnect site. An interconnect structure is formed within the opening over the interconnect site and over a side surface of the second conductive layer. The semiconductor wafer is singulated into individual semiconductor die.
Abstract:
A semiconductor device has a semiconductor wafer and a first conductive layer formed over the semiconductor wafer as contact pads. A first insulating layer formed over the first conductive layer. A second conductive layer including an interconnect site is formed over the first conductive layer and first insulating layer. The second conductive layer is formed as a redistribution layer. A second insulating layer is formed over the second conductive layer. An opening is formed in the second insulating layer over the interconnect site. The opening extends to the first insulating layer in an area adjacent to the interconnect site. Alternatively, the opening extends partially through the second insulating layer in an area adjacent to the interconnect site. An interconnect structure is formed within the opening over the interconnect site and over a side surface of the second conductive layer. The semiconductor wafer is singulated into individual semiconductor die.
Abstract:
A semiconductor device has a substrate. A first conductive layer is formed over the substrate. A first insulating layer is formed over the substrate. A second insulating layer is formed over the first insulating layer. A second conductive layer is formed over the second insulating layer. The second insulating layer is formed to include a cylindrical shape. The second conductive layer is formed as an under bump metallization layer. A first opening is formed in the second insulating layer. A second opening is formed in the second insulating layer around the first opening in the second insulating layer. An opening is formed in the first insulating layer over the first conductive layer. An opening is formed in the second insulating layer over the first conductive layer with the opening of the first insulating layer being greater than the opening of the second insulating layer.
Abstract:
A semiconductor device has a substrate. A first conductive layer is formed over the substrate. A first insulating layer is formed over the substrate. A second insulating layer is formed over the first insulating layer. A second conductive layer is formed over the second insulating layer. The second insulating layer is formed to include a cylindrical shape. The second conductive layer is formed as an under bump metallization layer. A first opening is formed in the second insulating layer. A second opening is formed in the second insulating layer around the first opening in the second insulating layer. An opening is formed in the first insulating layer over the first conductive layer. An opening is formed in the second insulating layer over the first conductive layer with the opening of the first insulating layer being greater than the opening of the second insulating layer.
Abstract:
A semiconductor device has a semiconductor die and conductive pillar with a recess or protrusion formed over a surface of the semiconductor die. The conductive pillar is made by forming a patterning layer over the semiconductor die, forming an opening with a recess or protrusion in the patterning layer, depositing conductive material in the opening and recess or protrusion, and removing the patterning layer. A substrate has bump material deposited over a conductive layer formed over a surface of the substrate. The bump material is melted. The semiconductor die is pressed toward the substrate to enable the melted bump material to flow into the recess or over the protrusion if the conductive pillar makes connection to the conductive layer. A presence or absence of the bump material in the recess or protrusion of the conductive pillar is detected by X-ray or visual inspection.
Abstract:
A semiconductor device has a semiconductor die and conductive pillar with a recess or protrusion formed over a surface of the semiconductor die. The conductive pillar is made by forming a patterning layer over the semiconductor die, forming an opening with a recess or protrusion in the patterning layer, depositing conductive material in the opening and recess or protrusion, and removing the patterning layer. A substrate has bump material deposited over a conductive layer formed over a surface of the substrate. The bump material is melted. The semiconductor die is pressed toward the substrate to enable the melted bump material to flow into the recess or over the protrusion if the conductive pillar makes connection to the conductive layer. A presence or absence of the bump material in the recess or protrusion of the conductive pillar is detected by X-ray or visual inspection.