Abstract:
Disclosed is a main synchronization sequence design method for global covering multi-beam satellite LTE, comprising the follow steps: extending a standard Zadoff-Chu sequence to a generalized Zadoff-Chu sequence so as to obtain an initial candidate main synchronization sequence set of more candidate sequences; gradually narrowing down the candidate main synchronization sequence set according to a selection standard of a main synchronization sequence to obtain a final candidate main synchronization sequence set; and obtaining a main synchronization sequence set with optimal eclectic performance and complexity from the final candidate main synchronization sequence set. According to the present invention, a main synchronization sequence with optimal eclectic performance and calculation complexity can be designed for a global covering same-frequency networking multi-beam satellite LTE system.
Abstract:
Disclosed are a method and system for acquiring massive MIMO beam domain statistical channel information. A refined beam domain channel model involved in the disclosed method is based on a refined sampling steering vector matrix. Compared with a traditional DFT matrix-based beam domain channel model, when antenna size is limited, said model is closer to a physical channel model, and provides a model basis for solving the problem of the universality of massive MIMO for various typical mobile scenarios under a constraint on antenna size. The present invention provides a method for acquiring massive MIMO refined beam domain a priori statistical channel information and a posteriori statistical channel information, the a posteriori statistical channel information comprising mean and variance information of the a posteriori channel. The method of the present invention has low complexity, can be applied to an actual massive MIMO system, provides support for a robust precoding transmission method, and has large application value.
Abstract:
The present disclosure relates to a skywave large-scale MIMO communication method, model, and system. A skywave communication base station in a short waveband is constructed using a large-scale antenna array, wherein skywave large-scale MIMO communication is carried out between the skywave communication base station and a user terminal in a coverage area by ionospheric reflection. The skywave communication base station determines a spacing of the large-scale antenna array according to a maximum operating frequency, and communicates with the user terminal based on a TDD communication mode, wherein a skywave large-scale MIMO signal is transmitted based on an OFDM modulation mode or a power efficiency improvement modulation mode. The skywave communication base station selects a communication carrier frequency within a short waveband range according to a real-time ionospheric channel characteristic, and adaptively selects an OFDM modulation parameter and a signal frame structure.
Abstract:
A wireless communication method utilizes a large-scale antenna array, which is deployed at the base station and can be a one-dimensional or two-dimensional array and can form tens of beams over the area covered by the base station. The communications method utilizes beam domain division of spatial resources at the base station side utilizing an analog multi-beam forming network or a digital domain multi-beam forming method. The base station carries out wireless communication with multiple users with the same time frequency resource and with the communications process implemented in the beam domain. Scheduling is accomplished through the utilization of a deterministic unitary matrix to form beams. The unitary matrix is a correlation matrix of interference that includes a channel characteristics mode energy coupling matrix, the beam allocation providing beam sets of different users that are non-overlapping to distinguish users in the beam domain.
Abstract:
The present invention provides a wireless communication method that utilizes large-scale antenna array. The method comprises: deploying a large-scale antenna array at the base station side wherein, the antenna array can be an one-dimensional or two-dimensional array, and can form tens of beam coverage over the area covered by the base station; accomplishing beam domain division of spatial resources at the base station side with an analog multi-beam forming network or a digital domain multi-beam forming method, wherein, the base station carries out wireless communication with multiple users with the same time-frequency resource, and the communication process is implemented in the beam domain; each user uses a different time-frequency resource to transmit detection signals; the base station obtains the beam domain long-time channel information of each user according to the received detection signals, to determine users that can communicate with the same time-frequency resource and allocate an corresponding beam set for each user; each user communicates with the base station on the selected beam set, wherein, the beam sets occupied by the users communicating with the same time-frequency resource have no overlap among them; pilot frequency signals from different users don't have to be orthogonal to each other, and the pilot frequency can be reused among the space division users.
Abstract:
A blockchain-enhanced open Internet of Things (IoT) access architecture includes an access point, a number of IoT devices, a hash access mechanism, a blockchain mining network, and a blockchain enabling mechanism that manages network access of the IoT device. The blockchain-enhanced open IoT access architecture provided in the present invention provides a secure, reliable, fair, and short-packet access service for a plurality of devices in an IoT network by using features of a blockchain such as distributed storage, tamper-proofing, and traceability, thereby promoting the trust and cooperation between the devices and ensuring the security and efficiency of the network in the large-scale untrustworthy IoT network. The blockchain-enhanced open IoT access architecture in the present invention can provide secure and reliable IoT access with low latency and a high value in practice.
Abstract:
The invention discloses a beam domain optical wireless communication method and system. A base station is equipped with an array of optical transceiver ports or transmitter/receiver ports and a lens, each optical transceiver port forms a beam with centralized energy through the lens, and the base station generates beams in different directions by using the optical transceiver port array and the lens, thereby realizing multi-beam coverage or large-scale beam coverage in a communication region. The base station transmits/receives signals of multiple or a large number of user terminals by using channel state information of each user terminal, and different optical transceiver ports transmit/receive signals in different directions, thereby realizing simultaneous communication and bidirectional communication between the base station and different user terminals.
Abstract:
Signal transmitting/receiving electronic devices or terminals in the present disclosure are configured to conduct per-beam signal synchronization in massive MIMO communication with a signal receiving/transmitting device or base station. During the massive MIMO communication, the devices or terminals are configured to transmit/receive signals via a set of beams to or from the signal receiving/transmitting device or base station. For beam domain signal of each individual beam of the plurality beams, the devices or terminals are configured to determine target time adjustments based on time shifts of the beam domain signals induced by multipath effect and target frequency adjustments based on frequency offsets of the beam domain signals induced by the Doppler effect; adjust time independent variables of the beam domain signals by the time adjustments; and adjust frequency independent variables of the beam domain signals by the frequency adjustments. Further, per-beam synchronized BDMA massive MIMO transmission method is disclosed, which provides a solution to efficient and reliable wireless communications with high mobility and/or high carrier frequency.
Abstract:
A large-scale MIMO (Multiple-Input Multiple-Output) wireless transmission method for millimeter wave/Terahertz networks is provided. In order to reduce the interruption of propagation in the millimeter wave/Terahertz band, a plurality of cells are combined into a wireless transmission network, the base station in each cell is equipped with a large-scale antenna array, and a unitary transformation matrix is used to achieve large-scale beam coverage for user terminals in the entire network. Moreover, in order to reduce the influence of the multipath and Doppler effects on transmission performance, received signals are synchronized for time and frequency in each receiving beam of a user terminal. The method allocates power for signal transmission according to the statistic information of synchronized equivalent channels, and gives an optimal power allocation matrix by iterative solution based on the CCCP (concave-convex procedure) and the deterministic equivalent method.
Abstract:
A massive multiple-input multiple-output (MIMO) robust precoding transmission method under imperfect channel state information (CSI), wherein the imperfect CSI obtained by the base station (BS) side of the massive MIMO system is modeled as an a posteriori statistical channel model including channel mean and channel variance information. The model considers the effects of channel estimation error, channel aging and spatial correlation. The BS performs the robust precoding transmission by using the a posteriori statistical channel model, so that the universality problem of the massive MIMO to various typical moving scenarios can be solved, and high spectral efficiency is achieved.