Abstract:
An electrical energy harvesting system includes at least one variable capacitor, preferably of electro-active polymer, two voltage sources, and a half-bridge network. The voltage sources are arranged in series with an interconnecting node between a first polarity terminal of the first voltage source and a second opposite polarity terminal of the second voltage source. For each variable capacitor the half-bridge network includes a pair of diodes in series with a common node therebetween, connected in parallel with the first voltage source, an inductor connected between the common node and a first terminal of the variable capacitor, a first switch in parallel with the first diode, and a second switch in parallel with the second diode. The second terminal of the variable capacitor is connected to the first polarity terminal of the second voltage source.
Abstract:
Method including a plurality of EAP based sections, a power source/sink unit and a controller. Each EAP based section includes an electronic charge/discharge unit and variable capacitor having an elastically deformable body with an arrangement of stretchable synthetic material and electrodes functioning as the capacitor with a variable capacitance as the deformable body stretches and relaxes. Each EAP based section is connected to the power source/sink unit by the respective electronic charge/discharge unit under control of the controller which includes: a processing unit coupled to a sensing circuitry which is coupled to the variable capacitor of each EAP based section, and a driving circuitry coupled to the electronic charge/discharge unit. The method includes for each EAP based section: receiving a state parameter signal/signals from the capacitor; establishing a dedicated control signal based on the associated state parameter signal/signals received; transmitting the dedicated control signal to the associated electronic charge/discharge unit.
Abstract:
Method for harvesting energy using an EAP based deformable body. The EAP based deformable body is an elastically deformable body including an arrangement of stretchable synthetic material and electrodes being arranged as a variable capacitor with a capacitance that varies as the deformable body stretches and relaxes. The method includes: looping through an energy harvesting cycle with a) stretching the deformable body from a minimal relaxed size L1 to a maximal stretched size L2; b) at the maximal stretched size electrically charging of the variable capacitor to create an electric field over the capacitor with an upper electric field level value; and subsequently c) a relaxation step from maximal stretched size to the minimal relaxed size; d) at the minimal relaxed size of the deformable body, electrically discharging the capacitor to a minimal charge level and a minimal electric field level value.
Abstract:
An electromechanical energy conversion system includes a variable capacitor, an electronic charging/discharging unit and a power source/sink; the power source/sink being coupled to the electronic charging/discharging unit which is coupled to the variable capacitor; the variable capacitor including first and second electrodes that are separated by an intermediate medium providing a gap distance therebetween; the gap distance being adjustable between a minimal distance and a maximal distance as a function of an externally applied mechanical force; the electronic charging/discharging unit being arranged for charging the variable capacitor from the power source/sink at substantially a state of the variable capacitor when the gap distance is minimal and the area of the elastically deformed body maximal, and for discharging the variable capacitor to the power source/sink at substantially a state of the variable capacitor when the gap distance is maximal and the area of the elastically deformed body minimal.
Abstract:
Method for harvesting energy using an EAP based deformable body. The EAP based deformable body is an elastically deformable body including an arrangement of stretchable synthetic material and electrodes being arranged as a variable capacitor with a capacitance that varies as the deformable body stretches and relaxes. The method includes: looping through an energy harvesting cycle with a) stretching the deformable body from a minimal relaxed size L1 to a maximal stretched size L2; b) at the maximal stretched size electrically charging of the variable capacitor to create an electric field over the capacitor with an upper electric field level value; and subsequently c) a relaxation step from maximal stretched size to the minimal relaxed size; d) at the minimal relaxed size of the deformable body, electrically discharging the capacitor to a minimal charge level and a minimal electric field level value.