Abstract:
The present invention discloses a power conversion apparatus for pulse current suitable for electrical discharge machining. The power conversion apparatus comprises a linear power conversion circuit and a switching power conversion circuit. The linear power conversion circuit offers a fast response to changes in output load and is used to adjust the output voltage. The magnitude or the waveform of the current through the workpiece is adjusted by the power resistor or the power transistor. Then, the switching power conversion circuit supplies the workpiece a stable power to make the power conversion apparatus output a stable pulse current to achieve the goal of high power conversion efficiency, high power density, and small size.
Abstract:
The configurations of an electronic ballast are provided in the present invention. The proposed electronic ballast includes a filter circuit having a first and a second output terminals, a rectifier circuit having a first input terminal, a second input terminal coupled to the second output terminal of the filter circuit, and a first output terminal, and a continuous-conduction-mode charge pump PFC circuit including a first inductor having a first terminal coupled to the first input terminal and a second terminal coupled to the first output terminal of the filter circuit, a second inductor having a first terminal and a first capacitor having a first terminal coupled to the first terminal of the first inductor and a second terminal coupled to the first terminal of the second inductor.
Abstract:
A control circuit controls a power output module and drives a load device. The control circuit includes a conversion unit, a feed-forward unit, a feedback unit and a control unit. The conversion unit generates a driving signal according to an output signal of the power output module for driving the load device. The feed-forward unit generates a duty cycle reference signal according to the output signal. The feedback unit generates a feedback signal according to the driving signal. The control unit outputs a control signal to control the conversion unit according to the duty cycle reference signal and feedback signal, thereby limiting the output power of the power output module within the maximum power region. A tracking method of the maximum power is also disclosed.
Abstract:
The configurations of an electronic ballast are provided in the present invention. The proposed electronic ballast includes a filter circuit having a first and a second output terminals, a rectifier circuit having a first input terminal, a second input terminal coupled to the second output terminal of the filter circuit, and a first output terminal, and a continuous-conduction-mode charge pump PFC circuit including a first inductor having a first terminal coupled to the first input terminal and a second terminal coupled to the first output terminal of the filter circuit, a second inductor having a first terminal and a first capacitor having a first terminal coupled to the first terminal of the first inductor and a second terminal coupled to the first terminal of the second inductor.
Abstract:
A magnetic navigation control apparatus includes a sensing unit, a control unit and a magnetic field generating unit. The sensing unit generates a sensing signal according to the position of a magnetic element. The control unit is electrically connected with the sensing unit and generates a first control signal and a second control signal according to the sensing signal. The magnetic field generating unit is electrically connected with the control unit and has a housing, a plurality of interpoles, and a plurality of short poles. The interpoles are disposed in the housing. The short poles are disposed between the interpoles evenly. The magnetic field generating unit generates a navigation signal according to the first control signal, thereby controlling the magnetic element to move in at least one direction within a target region. The magnetic navigation control apparatus has greater magnetic navigation effects, and can thus reduce the cost.
Abstract:
A control circuit controls a power output module and drives a load device. The control circuit includes a conversion unit, a feed-forward unit, a feedback unit and a control unit. The conversion unit generates a driving signal according to an output signal of the power output module for driving the load device. The feed-forward unit generates a duty cycle reference signal according to the output signal. The feedback unit generates a feedback signal according to the driving signal. The control unit outputs a control signal to control the conversion unit according to the duty cycle reference signal and feedback signal, thereby limiting the output power of the power output module within the maximum power region. A tracking method of the maximum power is also disclosed.
Abstract:
A discontinuous conduction current mode maximum power limitation photovoltaic converter connects to a ground and a solar cell having a temperature compensation signal and an output power and being solarized and includes a direct current/direct current voltage converter and a maximum power control circuit. The direct current/direct current voltage converter connects to the solar cell, includes an input terminal and an output terminal, offers a stable voltage and has an output voltage signal and an inner current. The maximum power control circuit connects to the direct current/direct current voltage converter and the solar cell, controls the direct current/direct current voltage converter to limit the output power of the solar cell to maximum and includes a temperature compensation feedback circuit, an output voltage feedback circuit, a current detection circuit and a main control circuit.
Abstract:
A magnetization apparatus includes a power supply unit, an energy storage element and a voltage clamp unit. The power supply unit generates at least one exciting signal to excite at least a coil of a magnetic field generating apparatus. The voltage clamp unit has a clamping voltage. The voltage level of the clamp voltage is higher than the voltage level of the exciting signal, and lower than the rated voltage of the energy storage element. When the exciting signal turns to a low voltage level, the voltage clamp unit controls the voltage level of the energy storage element to be less than or equal to the voltage level of the clamp voltage. This configuration with the voltage clamp unit can extend the lifetime of the energy storage element and reduce the energy loss to enhance the efficiency.
Abstract:
A magnetic field generating module includes a housing, a plurality of interpoles, a plurality of short poles and a plurality of windings. The housing has an annular section and an inner side. The interpoles disposed on the inner side in the housing are arranged around an inner periphery of the annular section with the same intervals. The short poles are disposed on the inner side in the housing and distributed between the interpoles evenly. A first interval is formed between the adjacent short poles, and a second interval equal to the first interval is formed between each of the interpoles and the adjacent short pole. The windings are respectively disposed corresponding to the interpoles and located between the interpoles and the short poles. The magnetic field generating module of the invention has more concentrated magnetic lines so as to prompt the magnetic flux density and the magnetic force.
Abstract:
The present invention discloses a current regulation module for providing a predetermined current. The current regulation module comprises a linear power conversion circuit, a switching power conversion circuit, a current detector, and a controller. The current detector is used to detect the output current of the current regulation module and output a detected current value. The controller control the switches in the linear power conversion circuit and the switching power conversion circuit in accordance with the detected current value, to strengthen the dynamic response ability to the sudden change in the output current.