Abstract:
A communication system includes a first transmission channel with a first end and a second end. The first and second ends are coupled to first and second transformers. First and second end transceivers transmit and receive signals via the first and second transformers. A first signal is supplied at the first end and comprises a transmission signal component of the first transceiver and a receive signal component from the second transceiver. The communication system comprises a replica transmitter that generates a replica of the transmission signal component of the first transceiver. A filter filters the replica signal. An active resistive summer receives the first signal and the filtered replica signal as inputs to reduce the transmission signal component at an output of the active resistive summer. The active resistive summer includes a feedback element.
Abstract:
A circuit configured to generate an analog signal having a pre-determined pattern. The circuit includes a plurality of digital-to-analog converters. Each of the plurality of digital-to-analog converters includes a plurality of current sources configured to generate a plurality of square waveforms and a summer configured to sum the plurality of square waveforms to generate the analog signal having the pre-determined pattern. Each square waveform is delayed by a pre-determined amount delay relative to another square waveform of the plurality of square waveforms. The pre-determined amount of delay between each square waveform of the plurality of waveforms is adjustable to adjust the pre-determined pattern of the analog signal. The pre-determined amount of delay is non-uniform throughout the circuit.
Abstract:
In a high-precision signal detection apparatus and method for a high-speed receiver, signal detection occurs asynchronously of the incoming data. A comparison clock is generated by an oscillator whose effective capacitance is varied by a second, lower speed oscillator connected to the capacitance. This prevents the asynchronous sampling that occurs in a zero-crossing position in the incoming data from remaining in that position in subsequent sampling cycles, so that a valid signal is not missed by the detector.
Abstract:
A system for reducing electromagnetic interference and ground bounce in an information communication system includes a plurality of information communication devices. Each of the plurality of information communication devices is responsive to a respective information communication clock signal. Each information communication clock signal of each of the plurality of information communication devices is associated with a common reference clock signal. The system includes a phase controller. The phase controller is responsive to the common reference clock signal. The phase controller alters a phase of each information communication clock signal of each of the plurality of information communication devices by a predetermined amount.
Abstract:
A switching physical layer (PHY) device comprises a first termination network, a switching transmitter, and a switching receiver. The first termination network communicates with a first network connector. The switching transmitter includes first and second outputs, which communicate with the first termination network and a second termination network, respectively. The switching transmitter selectively outputs a transmit signal to a selected one of the first and second termination networks based on a control signal. The switching receiver includes first and second inputs, which communicate with the first and second termination networks, respectively. The switching receiver receives a receive signal from the selected one of the first and second termination networks.
Abstract:
A communication circuit, Ethernet controller card, and method comprises K digital-to-analog converters each receiving a corresponding digital control signal and each providing a corresponding analog control signal, wherein K is at least two; K voltage-to-current converters each providing a corresponding bi-level transmit signal component in accordance with a respective one of the corresponding analog control signals; and wherein the corresponding bi-level transmit signal components of each of the K voltage-to-current converters are combined to produce a J-level transmit signal, wherein J=K+1.
Abstract:
An electrical circuit in a communications channel includes a first sub-circuit having a first input which receives a composite signal that includes a transmission signal component and a receive signal component, a second input which receives a replica transmission signal, a third input which receives an analog baseline correction current, and an output which provides a receive signal which comprises the composite signal minus the replica signal. A second sub-circuit for controls the analog baseline correction current, so that the magnitude of the composite signal does not exceed a predetermined value of an operating parameter of the electrical circuit. The composite signal, the replica transmission signal, and the analog baseline correction current are directly connected together at a common node of the first sub-circuit.
Abstract:
An analog switching circuit selects one of a first pair of differential outputs of a first circuit having a first common mode voltage and a second pair of differential outputs of a second circuit having a second common mode voltage. The analog switching circuit includes first and second switches having one of a source and drain that communicate with the first pair of differential outputs. Third and fourth switches have one of a source and drain that communicate with the second pair of differential outputs. An operational amplifier has a first input that communicates with the other of the source and drain of the first and third switches and a second input that communicates with the other of the source and drain of the second and fourth switches. A common mode feedback circuit communicates with the first and second inputs of the operational amplifier and maintains a common mode voltage input of the amplifier below the first and second common mode voltages.
Abstract:
An apparatus is provided to calibrate a target electrical circuit. The target electrical circuit includes at least a first variable capacitor and a first resistive element. The apparatus includes a second variable capacitor proportionally matched to the first variable capacitor. The apparatus also includes a measurement branch having at least a second resistive element proportionally matched to the first resistive element, and a current generator to generate a current proportionally matched to a predicted current of the target circuit. The apparatus also includes a digital loop to generate a digital code based on at least a comparison between d first voltage signal of the measurement branch and a predetermined voltage.
Abstract:
A level shift circuit includes a first latch circuit configured to receive a clock signal, a digital data signal, a first supply voltage, and a second supply voltage, and generate a first output signal based on the digital data signal. The first output signal has a first voltage level corresponding to the first supply voltage, and a second voltage level corresponding to the second supply voltage. At least one capacitor is configured to receive the first output signal, and retain a voltage value corresponding to the output signal. A second latch circuit is configured to receive the voltage value, a third supply voltage, and a fourth supply voltage, and generate a second output signal based on the voltage value. The second output signal has a third voltage level corresponding to the third supply voltage and a fourth voltage level corresponding to the fourth supply voltage.