Abstract:
Environment customization includes downloading extensible environment-settings data from a data-storage device and adjusting one or more environmental parameters defined by the extensible environment-settings data. The extensible environment-settings data is amended to include previously undefined settings, and the amended extensible environment-settings data is uploaded to the data-storage device.
Abstract:
The present invention provides a system and a method for improving the wireless local area network (WLAN) throughput performance in a collocated WLAN/Bluetooth system that uses packet traffic arbitration (PTA) to schedule WLAN and Bluetooth transmissions. The method includes detecting a Bluetooth transmission, where the Bluetooth transmission comprises one or more quiet periods; and scheduling a WLAN transmission, where frames of the WLAN transmission are received during the quiet periods of the Bluetooth transmission. The method according to the present invention allows the collocated WLAN to receive a frame send by the access point (AP) and acknowledge its reception without the AP reducing the data transmission rate due to unacknowledged frames. Also, the present invention discloses a mechanism where a collocated Bluetooth device (BTD) and WLAN device can communicate to the AP through a single antenna.
Abstract:
An access point (AP) (120a) manages and coordinates the switching of mobile devices (110) to other access points (120b, c, d). The access point (120a) monitors the quality of its communications link with the mobile device (110). When the access point (120a) determines that the quality is degrading, or when the access point (120a) determines that its traffic is excessive, or when another switch-triggering event (202) occurs, the access point (120a) sends a transfer-request to other access points (120b, c, d) in its vicinity. If another access point can accept the mobile device (110), it notifies the requesting access point (120a) that it is available. The requesting access point (120a) selects from among the available access points (120b, c, d), and notifies the mobile device (110) to switch to the selected access point. The notification to the mobile device (110) includes the appropriate attributes of the selected access point, so that the mobile device (110) can effect the switch to this selected access point with minimum overhead or delay. The requesting access point (120a) maintains a message buffer during this transfer process, so that any data lost during the transfer can be easily recovered.
Abstract:
A voice interaction architecture has a hands-free, electronic voice controlled assistant that permits users to verbally request information from cloud services. Since the assistant relies primarily, if not exclusively, on voice interactions, configuring the assistant for the first time may pose a challenge, particularly to a novice user who is unfamiliar with network settings (such as wife access keys). The architecture supports several approaches to configuring the voice controlled assistant that may be accomplished without much or any user input, thereby promoting a positive out-of-box experience for the user. More particularly, these approaches involve use of audible or optical signals to configure the voice controlled assistant.
Abstract:
An access point (AP) (120a) manages and coordinates the switching of mobile devices (110) to other access points (120b, c, d). The access point (120a) monitors the quality of its communications link with the mobile device (110). When the access point (120a) determines that the quality is degrading, or when the access point (120a) determines that its traffic is excessive, or when another switch-triggering event (202) occurs, the access point (120a) sends a transfer-request to other access points (120b, c, d) in its vicinity. If another access point can accept the mobile device (110), it notifies the requesting access point (120a) that it is available. The requesting access point (120a) selects from among the available access points (120b, c, d), and notifies the mobile device (110) to switch to the selected access point. The notification to the mobile device (110) includes the appropriate attributes of the selected access point, so that the mobile device (110) can effect the switch to this selected access point with minimum overhead or delay. The requesting access point (120a) maintains a message buffer during this transfer process, so that any data lost during the transfer can be easily recovered.
Abstract:
Environment customization includes downloading extensible environment-settings data from a data-storage device and adjusting one or more environmental parameters defined by the extensible environment-settings data. The extensible environment-settings data is amended to include previously undefined settings, and the amended extensible environment-settings data is uploaded to the data-storage device.
Abstract:
The present invention provides a system and a method for transferring data between a Bluetooth device (BTD) and a wireless local area network (WLAN) device which uses packet traffic arbitration (PTA). The method of the present invention includes encoding data using a plurality of control lines between the BTD and WLAN, transmitting the data and acknowledging the data reception using the existing control lines. The method according to the present invention allows BTD and WLAN device to transmit additional scheduling information, schedule the medium access, and reduce the number of collisions between the two devices.
Abstract:
Wireless communications over different networks using overlapping signal channels is facilitated. According to an example embodiment, information characterizing the usage of an overlapping channel by a first network is used to schedule communications on the overlapping channel by the second network. Another example embodiment is directed to the use of existing coexistence control lines between collocated communications circuits in a wireless device to communicate data indicative of the use of the overlapping channel. In some applications, these communications approaches are used with a network device operating on different networks, such as with a handheld device that communicates on both a Bluetooth network and wireless local area network (WLAN).
Abstract:
The present invention provides a system and a method for transferring data between a Bluetooth device (BTD) and a wireless local area network (WLAN) device which uses packet traffic arbitration (PTA). The method of the present invention includes encoding data using a plurality of control lines between the BTD and WLAN, transmitting the data and acknowledging the data reception using the existing control lines. The method according to the present invention allows BTD and WLAN device to transmit additional scheduling information, schedule the medium access, and reduce the number of collisions between the two devices.
Abstract:
A system comprises a plurality of wireless stations for exchanging data over a wireless network and a coordinator station such an access point. The coordinator station receives a request for a traffic specification from one of the wireless stations. The traffic request comprises a traffic parameter (202) representative of the traffic specification. The coordinator station runs an acceptance algorithm (226) to determine if the request can be met based on the parameter and a current traffic schedule based on other previously granted traffic requests (228). If the new request can be accommodated, a traffic scheduler thereafter generates a new traffic schedule (232, 234) using the Cyclic Executive Model (230).