Abstract:
In accordance with an embodiment, described herein is a system and method for handling lazy deserialization exceptions in an application server environment. When a stateful, e.g., EJB client request arrives to the EJB container, if the container detects that it cannot deserialize the state on this server and a patching (Patching, Zero Downtime Patching, ZDT) application upgrade rollout is in progress, the container can ask the replication manager to replicate the bean state to a new secondary that is in the opposite ZDT failover server group of this server, if it can find one. A remote reference of the replica on the new secondary will be set to a special type exception, which carries the replica's remote reference to the client side, in order to fulfill the client request.
Abstract:
In accordance with an embodiment, described herein is a system and method for handling lazy deserialization exceptions in an application server environment. When a stateful, e.g., EJB client request arrives to the EJB container, if the container detects that it cannot deserialize the state on this server and a patching (Patching, Zero Downtime Patching, ZDT) application upgrade rollout is in progress, the container can ask the replication manager to replicate the bean state to a new secondary that is in the opposite ZDT failover server group of this server, if it can find one. A remote reference of the replica on the new secondary will be set to a special type exception, which carries the replica's remote reference to the client side, in order to fulfill the client request.
Abstract:
In accordance with an embodiment, systems and methods for session handling in a multitenant application server environment are provided. The ability to replicate a session is important but equally so is the ability to ensure the session is successfully deserialized on some server in order to serve the request. After a server has been shut down, the front end can fail over the request to one of the remaining server members in a cluster. Once the server receives the request it can attempt to grab the session from a server that holds a copy of that session. When a patched or unpatched server attempts to load the session that originated from a server of the opposite state, it can fail to deserialize the session, and inform the traffic director of severs in the cluster that are capable of deserializing the session.
Abstract:
In accordance with an embodiment, described herein are a system and method for partition-scoped patching in an application server environment. A computer environment includes an application server, for example a multitenant application server, that supports the use of one or more partitions, wherein each partition provides an administrative and runtime subdivision of a domain. During a partition-scoped rollout of a patch or update, to a resource group or application within a plurality of servers or clusters of servers, the resource group or application can be updated within a targeted partition, using a patch orchestrator and partition lifecycle runtime interface, without affecting the operation of other partitions at those servers or clusters of servers. One or more session handling flags can be used, to enable sessions and/or requests that are associated with the targeted partition, to be handled by a traffic director, during the patching process.
Abstract:
In accordance with an embodiment, described herein are a system and method for partition-scoped patching in an application server environment. A computer environment includes an application server, for example a multitenant application server, that supports the use of one or more partitions, wherein each partition provides an administrative and runtime subdivision of a domain. During a partition-scoped rollout of a patch or update, to a resource group or application within a plurality of servers or clusters of servers, the resource group or application can be updated within a targeted partition, using a patch orchestrator and partition lifecycle runtime interface, without affecting the operation of other partitions at those servers or clusters of servers. One or more session handling flags can be used, to enable sessions and/or requests that are associated with the targeted partition, to be handled by a traffic director, during the patching process.
Abstract:
Systems and methods are provided for providing parallel muxing between servers in a cluster. One such system can include a cluster of one or more high performance computing systems, each including one or more processors and a high performance memory. The cluster communicates over an InfiniBand network. The system can also include a middleware environment, executing on the cluster, that includes one or more application server instances. The system can further include a plurality of muxers, wherein each application server instance includes at least one muxer. Each muxer can receive information from a plurality of threads to transmit to a different muxer on a different application server instance over the Infiniband network using a plurality of parallel channels.
Abstract:
In accordance with an embodiment, systems and methods for session handling in a multitenant application server environment are provided. The ability to replicate a session is important but equally so is the ability to ensure the session is successfully deserialized on some server in order to serve the request. After a server has been shut down, the front end can fail over the request to one of the remaining server members in a cluster. Once the server receives the request it can attempt to grab the session from a server that holds a copy of that session. When a patched or unpatched server attempts to load the session that originated from a server of the opposite state, it can fail to deserialize the session, and inform the traffic director of severs in the cluster that are capable of deserializing the session.
Abstract:
Systems and methods are provided for providing parallel muxing between servers in a cluster. One such system can include a cluster of one or more high performance computing systems, each including one or more processors and a high performance memory. The cluster communicates over an InfiniBand network. The system can also include a middleware environment, executing on the cluster, that includes one or more application server instances. The system can further include a plurality of muxers, wherein each application server instance includes at least one muxer. Each muxer can receive information from a plurality of threads to transmit to a different muxer on a different application server instance over the Infiniband network using a plurality of parallel channels.