Abstract:
An endoscope system according to the present invention includes: a first illuminating portion that emits first illumination lights having low-spatial-frequency and high-spatial-frequency and changes the intensity distribution of the first illumination lights over time; a second illuminating portion that emits a second illumination light; an imaging unit that images first and second illumination images of an subject respectively illuminated by the first and second illumination lights; and an image-processing portion that processes the first and second illumination images. The imaging unit images four images including images that correspond to the first illumination lights having low-spatial-frequency and high-spatial-frequency and images in which light and dark portions of the first illumination lights are exchanged with each other. The image-processing portion separates three image information for different depths, and processes the second illumination image by the image information other than the image information about the outermost surface side.
Abstract:
An endoscope system of the present invention includes: a first illumination unit that emits first illumination light for imaging two sets of image information about a subject at different depths; a second illumination unit that emits second illumination light having a wide band covering a visible band from a position different from the position of the first illumination light; an imaging unit that images a first illumination image and a second illumination image of the subject that is illuminated with the first illumination light and the second illumination light; a separation processing unit that separates the two sets of image information from the first illumination image; and a separated-image generating unit that generates two separated images by processing the second illumination image using the two sets of image information.
Abstract:
An endoscope system according to the present invention includes: an illumination unit that radiates illumination light onto a subject, the illumination light having a spatially non-uniform intensity distribution including a light section and a dark section in a beam cross section orthogonal to an optical axis; an imaging unit that images an illumination image of the subject irradiated with the illumination light; and a separation processor that generates two separate images from the illumination image. Among intensity values of pixels within the illumination image respectively corresponding to the light section, the dark section, and a section having intermediate intensity between the light section and the dark section, the separation processor generates the two separate images based on at least two of the intensity values.
Abstract:
An endoscope system of the present invention includes: a first illumination unit that emits first illumination light for imaging two sets of image information about a subject at different depths; a second illumination unit that emits second illumination light having a wide band covering a visible band from a position different from the position of the first illumination light; an imaging unit that images a first illumination image and a second illumination image of the subject that is illuminated with the first illumination light and the second illumination light; a separation processing unit that separates the two sets of image information from the first illumination image; and a separated-image generating unit that generates two separated images by processing the second illumination image using the two sets of image information.
Abstract:
An endoscope according to the present invention includes an insertion section, a forward observation window and a forward illumination system disposed at a distal end surface of the insertion section, a lateral observation window and a lateral illumination system disposed toward a proximal end, and an image capturing element captures an image of light. The forward illumination system includes a scattering element surrounding the forward observation window, and light guide fibers that cause illumination light from a light source to enter, toward a distal end, input locations arranged in a circumferential direction at a proximal end of the scattering element. The scattering element is constituted by dispersing particles in a homogenous medium, and satisfies the conditional expressions 0.06≤μs≤100 and 0.7≤g
Abstract:
An image capturing device includes: an image capturing system having an optical axis; and at least one illumination system disposed at a position so as to surround the optical axis. The illumination system includes: a reflective surface deflecting part of illumination light; a refractive surface deflecting the other part of the illumination light and the illumination light reflected by the reflective surface; and an emission surface from which the illumination light refracted by the refractive surface is emitted. In a cross section including the optical axis, the reflective surface has an area inclined in such a direction as to become farther away from the optical axis, the refractive surface has an area inclined in such a direction as to approach the optical axis and is disposed between the reflective and emission surfaces. The emission end is disposed at a radial position between rear ends of the refractive and reflective surfaces.
Abstract:
A light-source optical system according to the present invention includes a laser light source that radiates excitation light; a wavelength conversion unit that is irradiated with the excitation light to generate light having a wavelength different from that of the excitation light; and a light deflection and convergence unit that causes an odd number of light beams greater than or equal to three, radiated from the wavelength conversion unit in mutually different directions, to converge at and re-enter the wavelength conversion unit from the backward direction of another light beam, radiated in a direction different from the directions of the odd number of light beams greater than or equal to three, thereby making the odd number of light beams greater than or equal to three overlap the other light beam.
Abstract:
An illumination optical system includes a diffusion element that diffuses illumination light entering from a light source, the diffusion element emitting the illumination light. The diffusion element is formed by dispersing fine particles of at least one kind in a homogeneous medium that is made of a material different from the fine particles, and the diffusion element satisfies a specific conditional expressions.
Abstract:
An endoscope system according to the present invention includes: a second illumination unit that emits second illumination light; a first illumination unit that emits, simultaneously with the second illumination light, first illumination light that is light of a different wavelength band from the second illumination light and is for imaging two sets of image information about a subject different depths; an imaging unit that simultaneously images a first illumination image of the subject illuminated with the first illumination light and a second illumination image of the subject illuminated with the second illumination light; a separation processing unit that separates the two sets of image information from the first illumination image; and a separated-image creating unit that processes the second illumination image using the two sets of image information to create separated images.
Abstract:
An illumination optical system according to the present invention is provided with: an illumination-light guiding portion configured to guide illumination light emitted from a light source portion; and an illumination-light deflecting portion configured to emit the illumination light guided thereto by the illumination-light guiding portion after deflecting the illumination light by means of reflection, wherein, in one cross-section along a direction in which the illumination light travels, the illumination-light guiding portion has a pair of total reflection surfaces in which the distance therebetween gradually increases in a forward traveling direction of the illumination light, and the illumination-light deflecting portion is provided with an emission surface from which the illumination light guided by the illumination-light guiding portion is emitted, and a reflection surface that has a convex shape facing the emission surface and that reflects the illumination light guided by the illumination-light guiding portion toward the emission surface.