Abstract:
Integrated systems for providing audio, video, light stimulus and/or measuring brain activity through the use of one or more electrodes, e.g., EEG dermatrodes, are described. A system, e.g., a head mounted VR device, for providing stimulation to a user and detecting user responses to said stimulation includes a head mount, a plurality of light emitting elements, e.g., sets of LEDs, a housing secured to said head mount, and at least one or more electrodes for making contact with skin of a user. In various embodiments, the system further determines a user's mental state and provides audio and/or visual feedback to the user.
Abstract:
Camera and/or lens calibration information is generated as part of a calibration process in video systems including 3-dimensional (3D) immersive content systems. The calibration information can be used to correct for distortions associated with the source camera and/or lens. A calibration profile can include information sufficient to allow the system to correct for camera and/or lens distortion/variation. This can be accomplished by capturing a calibration image of a physical 3D object corresponding to the simulated 3D environment, and creating the calibration profile by processing the calibration image. The calibration profile can then be used to project the source content directly into the 3D viewing space while also accounting for distortion/variation, and without first translating into an intermediate space (e.g., a rectilinear space) to account for lens distortion.
Abstract:
Methods and apparatus for using selective resolution reduction on images to be transmitted and/or used by a playback device are described. Prior to transmission one or more images of an environment are captured. Based on image content, motion detection and/or user input a resolution reduction operation is selected and performed. The reduced resolution image is communicated to a playback device along with information indicating a UV map corresponding to the selected resolution allocation that should be used by the playback device for rendering the communicated image. By changing the resolution allocation used and which UV map is used by the playback device different resolution allocations can be made with respect to different portions of the environment while allowing the number of pixels in transmitted images to remain constant. The playback device renders the individual images with the UV map corresponding to the resolution allocation used to generate the individual images.
Abstract:
Methods and apparatus for using selective resolution reduction on images to be transmitted and/or used by a playback device are described. Prior to transmission one or more images of an environment are captured. Based on image content, motion detection and/or user input a resolution reduction operation is selected and performed. The reduced resolution image is communicated to a playback device along with information indicating a UV map corresponding to the selected resolution allocation that should be used by the playback device for rendering the communicated image. By changing the resolution allocation used and which UV map is used by the playback device different resolution allocations can be made with respect to different portions of the environment while allowing the number of pixels in transmitted images to remain constant. The playback device renders the individual images with the UV map corresponding to the resolution allocation used to generate the individual images.
Abstract:
Methods and apparatus for using selective resolution reduction on images to be transmitted and/or used by a playback device are described. Prior to transmission one or more images of an environment are captured. Based on image content, motion detection and/or user input a resolution reduction operation is selected and performed. The reduced resolution image is communicated to a playback device along with information indicating a UV map corresponding to the selected resolution allocation that should be used by the playback device for rendering the communicated image. By changing the resolution allocation used and which UV map is used by the playback device different resolution allocations can be made with respect to different portions of the environment while allowing the number of pixels in transmitted images to remain constant. The playback device renders the individual images with the UV map corresponding to the resolution allocation used to generate the individual images.
Abstract:
Methods and apparatus for collecting user feedback information from viewers of content are described. Feedback information is received from viewers of content. The feedback indicates, based on head tracking information in some embodiments, where users are looking in a simulated environment during different times of a content presentation, e.g., different frame times. The feedback information is used to prioritize different portions of an environment represented by the captured image content. Resolution allocation is performed based on the feedback information and the content re-encoded based on the resolution allocation. The resolution allocation may and normally does change as the priority of different portions of the environment change.
Abstract:
An unobstructed image portion of a captured image from a first camera of a camera pair, e.g., a stereoscopic camera pair including fisheye lenses, is combined with a scaled extracted image portion generated from a captured image from a second camera in the camera pair. An unobstructed image portion of a captured image from the second camera of the camera pair is combined with a scaled extracted image portion generated from a captured image from the first camera in the camera pair. As part of the combining obstructed image portions which were obstructed by part of the adjacent camera are replaced in some embodiments. In some embodiments, the obstructions are due to adjacent fisheye lens. In various embodiments fish eye lenses which have been cut to be flat on one side are used for the left and right cameras with the spacing between the optical axis approximating the spacing between the optical axis of a human person's eyes.
Abstract:
Camera and/or lens calibration information is generated as part of a calibration process in video systems including 3-dimensional (3D) immersive content systems. The calibration information can be used to correct for distortions associated with the source camera and/or lens. A calibration profile can include information sufficient to allow the system to correct for camera and/or lens distortion/variation. This can be accomplished by capturing a calibration image of a physical 3D object corresponding to the simulated 3D environment, and creating the calibration profile by processing the calibration image. The calibration profile can then be used to project the source content directly into the 3D viewing space while also accounting for distortion/variation, and without first translating into an intermediate space (e.g., a rectilinear space) to account for lens distortion.
Abstract:
Methods and apparatus for using selective resolution reduction on images to be transmitted and/or used by a playback device are described. Prior to transmission one or more images of an environment are captured. Based on image content, motion detection and/or user input a resolution reduction operation is selected and performed. The reduced resolution image is communicated to a playback device along with information indicating a UV map corresponding to the selected resolution allocation that should be used by the playback device for rendering the communicated image. By changing the resolution allocation used and which UV map is used by the playback device different resolution allocations can be made with respect to different portions of the environment while allowing the number of pixels in transmitted images to remain constant. The playback device renders the individual images with the UV map corresponding to the resolution allocation used to generate the individual images.
Abstract:
Methods and apparatus for using selective resolution reduction on images to be transmitted and/or used by a playback device are described. Prior to transmission one or more images of an environment are captured. Based on image content, motion detection and/or user input a resolution reduction operation is selected and performed. The reduced resolution image is communicated to a playback device along with information indicating a UV map corresponding to the selected resolution allocation that should be used by the playback device for rendering the communicated image. By changing the resolution allocation used and which UV map is used by the playback device different resolution allocations can be made with respect to different portions of the environment while allowing the number of pixels in transmitted images to remain constant. The playback device renders the individual images with the UV map corresponding to the resolution allocation used to generate the individual images.