Abstract:
A composite electronic component includes a capacitor and a resistor stacked in a height direction. The capacitor includes a capacitor body, and first and second external electrodes. The resistor includes a base portion, a resistor, first and second upper surface conductors, first and second lower surface conductors, first connecting conductors, and second connecting conductors. An upper surface of the base portion of the resistor faces a lower surface of the capacitor body of the capacitor, and the first upper surface conductor and the first external electrode are electrically connected, and the second upper surface conductor and the second external electrode are electrically connected.
Abstract:
An electronic component includes an electronic element including external electrodes on a surface and a substrate terminal on which the electronic element is mounted. The substrate terminal includes a first main surface, a second main surface opposite the first main surface, and a peripheral surface joining the first main surface and the second main surface. The substrate terminal includes mounting electrodes provided on the second main surface and electrically connected to the external electrodes of the electronic element, and connection electrodes provided on the first main surface and electrically connected to lands of a circuit substrate. A maximum width of the connection electrodes is greater than a maximum width of the mounting electrodes.
Abstract:
An electronic component includes an electronic element including outer electrodes on a surface, a substrate terminal on which the electronic element is mounted, and a conductor that covers at least a portion of the substrate terminal. The substrate terminal includes a first main surface, a second main surface at a side opposite to the first main surface, and a side surface connecting the first main surface and the second main surface. The substrate terminal includes a mounting electrode that is provided on the first main surface and is electrically connected to the outer electrodes of the electronic element. The mounting electrode includes adjacent portions that are located to be adjacent to the side surface of the substrate terminal. The conductor covers at least a portion of the adjacent portion.
Abstract:
In a monolithic capacitor mounting structure, assuming that a portion of a first outer electrode joined with a first bonding material is a first bonding portion and a portion of a second outer electrode joined with a second bonding material is a second bonding portion, a length of each of the first and second bonding portions in a lengthwise direction of the monolithic capacitor is about 0.2 times to about 0.5 times a length of an elementary body in the lengthwise direction, and a center of each of the first and second bonding portions in the lengthwise direction is located at a position different from a center of the elementary body in the lengthwise direction. Vibration noise is changed depending on positions of outer electrodes of the monolithic capacitor, the outer electrodes being used to bond the monolithic capacitor to a mounting substrate.
Abstract:
In a power supply apparatus that supplies direct current power to a load with a power supply unit, since a load power supply current is detected by a current detector from a voltage between both ends of a through electrode of a three-terminal capacitor provided on a power feed line extending from a power supply unit to a load, the three-terminal capacitor serving as a filter to reduce ripple noise can be used also as a detection resistor for detecting the load power supply current. Accordingly, it is possible to detect the load power supply current with a simple configuration that does not require a resistance element to detect the load power supply current, unlike in the related art. Consequently, it is not necessary to ensure an area where the resistance element for current detection can be mounted to reduce a power supply apparatus in size.
Abstract:
A circuit module includes a first and second monolithic ceramic capacitors encapsulated by a mold resin layer on a wiring board. The first and second monolithic ceramic capacitors are lined up along a direction parallel or substantially parallel to the main surface of the wiring board and are electrically connected in series or in parallel through a conductive pattern provided on the wiring board. One of a pair of end surfaces of the first monolithic ceramic capacitor is opposed to one of the width-direction side surfaces as a pair of side surfaces of the second monolithic ceramic capacitor with the mold resin layer interposed.
Abstract:
Laminated ceramic capacitors include ceramic layers and inner electrodes that are alternately laminated. The inner electrodes are laminated in the same lamination direction, and a first outer electrode and a second outer electrode are electrically connected to the inner electrodes. In a mounting process, the laminated ceramic capacitors are mounted on a mounting surface such that the inner electrodes are perpendicular or substantially perpendicular to the mounting surface.
Abstract:
A multilayer ceramic capacitor includes flat inner electrodes that are laminated on each other. An interposer includes a substrate that is larger than the multilayer ceramic capacitor. A first mounting electrode to mount the multilayer ceramic capacitor is located on a first principal surface of the substrate, and a first external connection electrode for connection to an external circuit board is located on a second principal surface. A recess is located in a side surface of the interposer. A connecting conductor is located in the wall surface of the recess. The connecting conductor is located at a position spaced apart by a predetermined distance from the side surface of the interposer.
Abstract:
A method of manufacturing a mounting substrate in which a pair of monolithic ceramic capacitors each of which includes a multilayer body in which a plurality of dielectric ceramic sheets and a plurality of substantially planar inner electrodes are stacked on top of one another and at least a pair of outer electrodes electrically connected to the inner electrodes and provided on a surface of the multilayer body are mounted on a circuit board includes a process of joining the outer electrodes to lands formed on the front rear surfaces of the circuit board, the lands formed on the front surface being formed at positions that are plane-symmetrical to positions of the corresponding lands formed on the rear surface while being electrically connected to the corresponding lands formed on the rear surface, such that surface directions of planes of the inner electrodes match each other.
Abstract:
In an electronic component, upper surface electrodes are located on one main surface of an insulating substrate of an interposer on which a multilayer ceramic capacitor is mounted. The insulating substrate has substantially the same shape as that of the multilayer ceramic capacitor, viewed from a direction perpendicular or substantially perpendicular to the main surface, and has the multilayer ceramic capacitor mounted thereon so that the length direction of the multilayer ceramic capacitor substantially coincides with the length direction of the insulating substrate. The insulating substrate includes cutouts that include connection electrodes, respectively, and that are located at the four corners viewed from the direction perpendicular or substantially perpendicular to the main surface. The upper surface electrodes on the one main surface are connected via the connection electrodes to lower surface electrodes, respectively, that are located on the other main surface and are connected to a circuit board.