Abstract:
A multi-mode controller applied to a power converter includes a detection range generation module and a gate signal generation unit. The detection range generation module is used for generating a comparison voltage according to a reference current, and generating a detection signal according to the comparison voltage and a first reference voltage. When the detection signal is disabled by a zero-crossing signal, the gate signal generation unit generates a gate control signal corresponding to a quasi-resonant mode of the power converter according to the zero-crossing signal; and when the detection signal is disabled by a continuous-conduction mode signal generated by the detection range generation module according to the comparison voltage and a second reference voltage, the gate signal generation unit generates the gate control signal corresponding to a continuous-conduction mode of the power converter according to the continuous-conduction mode signal.
Abstract:
A control circuit applied to a power converter includes a multi-functional pin, a zero-crossing signal generator, and an over-voltage detector. The multi-functional pin is used for receiving an auxiliary current generated by an auxiliary winding of the power converter, and an input current. The zero-crossing signal generator is used for generating a zero-crossing signal according to the auxiliary current. The over-voltage detector is used for generating an over-voltage signal according to the auxiliary current. The control circuit generates a switch control signal to the power switch according to the zero-crossing signal, or generates an over-voltage protection signal to the power switch according to the over-voltage signal.
Abstract:
A controller applied to a primary side of an inductor-inductor-capacitor (LLC) resonant converter includes a common-mode voltage generation circuit and a control signal generation circuit. The common-mode voltage generation circuit is used for generating a common-mode voltage. The control signal generation circuit is used for generating an upper bridge switch control signal and a lower bridge switch control signal according to a compensation voltage corresponding to an output voltage of the LLC resonant converter, a sensing voltage corresponding to an input voltage of the LLC resonant converter, and the common-mode voltage, wherein the upper bridge switch control signal and the lower bridge switch control signal control an upper bridge switch and a lower bridge switch of the primary side of the LLC resonant converter, respectively.
Abstract:
An oscillator applied to a control circuit of a power converter includes a compensation module and an oscillation module. The compensation module outputs or sinks an adjustment current according to a compensation voltage corresponding to a load, a direct current voltage of a primary side of the power converter, and a reference voltage. The oscillation module outputs a clock signal according to the compensation voltage, a control voltage, and the adjustment current. The control circuit generates a gate control signal to a power switch of the primary side according to the clock signal. When the compensation voltage is less than a first predetermined voltage, a frequency of the gate control signal is a first fixed value, and when the compensation voltage is between the first predetermined voltage and a second predetermined voltage and greater than the second predetermined voltage, the frequency is varied with the compensation voltage.
Abstract:
A multi-mode controller applied to a power converter includes a detection range generation module and a gate signal generation unit. The detection range generation module is used for generating a comparison voltage according to a reference current, and generating a detection signal according to the comparison voltage and a first reference voltage. When the detection signal is disabled by a zero-crossing signal, the gate signal generation unit generates a gate control signal corresponding to a quasi-resonant mode of the power converter according to the zero-crossing signal; and when the detection signal is disabled by a continuous-conduction mode signal generated by the detection range generation module according to the comparison voltage and a second reference voltage, the gate signal generation unit generates the gate control signal corresponding to a continuous-conduction mode of the power converter according to the continuous-conduction mode signal.
Abstract:
A multi-mode controller applied to a power converter includes a detection range generation module and a gate signal generation unit. The detection range generation module is used for generating a comparison voltage according to a reference current, and generating a detection signal according to the comparison voltage and a first reference voltage. When the detection signal is disabled by a zero-crossing signal, the gate signal generation unit generates a gate control signal corresponding to a quasi-resonant mode of the power converter according to the zero-crossing signal; and when the detection signal is disabled by a continuous-conduction mode signal generated by the detection range generation module according to the comparison voltage and a second reference voltage, the gate signal generation unit generates the gate control signal corresponding to a continuous-conduction mode of the power converter according to the continuous-conduction mode signal.
Abstract:
A device for detecting an average output current of a power converter includes a current generation unit, a first voltage generation unit, a first current mirror unit, and a second current mirror unit. The current generation unit generates a first charge current according to an intermediate voltage. The first voltage generation unit generates a first node voltage according to the first charge current, a first discharge current, a turning-on time, and an inverse turning-on time. The first current mirror unit generates a first current according to the first node voltage, and generates a second voltage corresponding to the average output current of a secondary side of the power converter according to the first current. The second current mirror unit generates the first discharge current according to the first current.
Abstract:
A controller applied to a primary side of an inductor-inductor-capacitor (LLC) resonant converter includes a common-mode voltage generation circuit and a control signal generation circuit. The common-mode voltage generation circuit is used for generating a common-mode voltage. The control signal generation circuit is used for generating an upper bridge switch control signal and a lower bridge switch control signal according to a compensation voltage corresponding to an output voltage of the LLC resonant converter, a sensing voltage corresponding to an input voltage of the LLC resonant converter, and the common-mode voltage, wherein the upper bridge switch control signal and the lower bridge switch control signal control an upper bridge switch and a lower bridge switch of the primary side of the LLC resonant converter, respectively.
Abstract:
A multi-mode controller applied to a power converter includes a detection range generation module and a gate signal generation unit. The detection range generation module is used for generating a comparison voltage according to a reference current, and generating a detection signal according to the comparison voltage and a first reference voltage. When the detection signal is disabled by a zero-crossing signal, the gate signal generation unit generates a gate control signal corresponding to a quasi-resonant mode of the power converter according to the zero-crossing signal; and when the detection signal is disabled by a continuous-conduction mode signal generated by the detection range generation module according to the comparison voltage and a second reference voltage, the gate signal generation unit generates the gate control signal corresponding to a continuous-conduction mode of the power converter according to the continuous-conduction mode signal.
Abstract:
A device for detecting an average output current of a power converter includes a current generation unit, a first voltage generation unit, a first current mirror unit, and a second current mirror unit. The current generation unit generates a first charge current according to an intermediate voltage. The first voltage generation unit generates a first node voltage according to the first charge current, a first discharge current, a turning-on time, and an inverse turning-on time. The first current mirror unit generates a first current according to the first node voltage, and generates a second voltage corresponding to the average output current of a secondary side of the power converter according to the first current. The second current mirror unit generates the first discharge current according to the first current.