Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: an inner electrode having an inner current collector and an inner electrode active material layer surrounding the outer surface of the inner current collector; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and having an outer electrode active material layer, an open-structured outer current collector and a conductive paste layer.The outer electrode having a conductive paste layer and an open-structured outer current collector according to the present invention has good flexibility to improve the flexibility of a cable-type secondary battery having the same. Also, the conductive paste layer is made of a light material, and thus can contribute to the lightening of the cable-type secondary battery.
Abstract:
A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery.
Abstract:
The present invention relates to a method for manufacturing a cable-type secondary battery comprising an electrode that extends longitudinally in a parallel arrangement and that includes a current collector having a horizontal cross section of a predetermined shape and an active material layer formed on the current collector, and the electrode is formed by putting an electrode slurry including an active material, a polymer binder, and a solvent into an extruder, by extrusion-coating the electrode slurry on the current collector while continuously providing the current collector to the extruder, and by drying the current collector coated with the electrode slurry to form an active material layer.
Abstract:
The present invention relates to an anode for a secondary battery, comprising at least two anode wires which are parallel to each other and spirally twisted, each of the anode wires having an anode active material layer coated on the surface of a wire-type current collector; and a secondary battery comprising the anode. The anode of the present invention has an increased surface area to react with Li ions during a charging and discharging process, thereby improving the rate characteristics of a battery, and also release stress or pressure applied in the battery, e.g., the volume expansion of active material layers to prevent the deformation of the battery and ensure the stability thereof, thereby improving the life characteristic of the battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: an inner electrode having an inner current collector and an inner electrode active material layer surrounding the outer surface of the inner current collector; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and having an outer electrode active material layer, an open-structured outer current collector and a conductive paste layer.The outer electrode having a conductive paste layer and an open-structured outer current collector according to the present invention has good flexibility to improve the flexibility of a cable-type secondary battery having the same. Also, the conductive paste layer is made of a light material, and thus can contribute to the lightening of the cable-type secondary battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions, which comprises an electrolyte; an inner electrode, comprising an open-structured inner current collector surrounding the outer surface of the core for supplying lithium ions, an inner electrode active material layer formed on the surface of the inner current collector, and an electrolyte-absorbing layer formed on the outer surface of the inner electrode active material layer; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and comprising an outer electrode active material layer and an outer current collector.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a conductive layer formed on the electrode active material layer and comprising a conductive material and a binder; and a first porous supporting layer formed on the conductive layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery.
Abstract:
A sheet-form electrode for a secondary battery, includes a current collector; an electrode active material layer formed on one surface of the current collector; a conductive layer formed on the electrode active material layer and including a conductive material and a binder; and a first porous supporting layer formed on the conductive layer. The sheet-form electrode for a secondary battery has supporting layers on at least one surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions, which comprises an electrolyte; an inner electrode, comprising an open-structured inner current collector surrounding the outer surface of the core for supplying lithium ions, an inner electrode active material layer formed on the surface of the inner current collector, and an electrolyte-absorbing layer formed on the outer surface of the inner electrode active material layer; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and comprising an outer electrode active material layer and an outer current collector.