Abstract:
A stack structure of a high frequency printed circuit, mainly includes a transmission conductor pin group in a form of single row, where each signal pair and each transmission pair of the transmission conductor pin group respectively have a through hole portion thereon, and the inner layer of the circuit board has a trace portion in electric connection with the through hole portion, allowing each four terminals to be formed into one group. Utilizing the clever arrangement of the through hole portions and trace portions separates each terminal properly, thereby increasing the property of transmitted signals, and, at the same time, reducing noise interferences such as EMI and RFI.
Abstract:
An electric connector includes at least one transmission conductor group, a plurality of contacts formed at an end of the transmission conductor group and up and down alternating each other, and adaption sections formed at an end of the transmission conductor group distant from the contacts and are arranged in groups each including at least four adaption sections juxtaposing each other. The transmission conductor group includes a plurality of high-frequency differential signal transmission conductor pairs, a plurality of power transmission conductor pair, and a plurality of low-frequency signal transmission conductors. With the above arrangement, the contact of the transmission conductor group is arranged in two rows alternating each other so that the insertion between the male and female connectors is directionless. The adaption sections are set in a secured juxtaposing configuration by means of an annular band to show the feature of soldering free and suppressing interference.
Abstract:
The USB female connector contains an insulating base and a shielding casing enclosing the insulating base. On the insulating base, there is mainly a ground terminal having a flat ground contact section at an end on the insulating base. From the ground contact section, the ground terminal is extended away from the insulating base and forked into a first ground extension section, a second ground extension section, and a third ground extension section. Through the forked first, second, and third ground extension sections, the high-frequency crosstalk problem is effectively resolved.
Abstract:
An electronic connector includes a transmission conductor group including two rows of spring contacts for insertion into a connector female portion in normal and reverse directions, a transmission conductor pin group, which is formed at a rear side of the transmission conductor group and arranged in a single row, a circuit substrate, which is electrically connected to the transmission conductor pin group, a shielding housing, which receives therein the transmission conductor group, and an inclined cover section, which extends from the shielding housing to shield the transmission conductor pin group. As such, contacts of the transmission conductor group are provided in two rows so that mating between a male portion and a female portion can be made in a directionless manner, allowing for insertion in both normal and reverse directions. The transmission conductor pin group is set in an arrangement of a single row to maintain the convenience of manufacturing.
Abstract:
The high-frequency signal processing method provides at least two isolation terminals between adjacent signal transmission conductor sets. For two adjacent signal transmission conductor sets of a substrate, at least two vias through the substrate are embedded with conductive pillars, respectively. Each conductive pillar penetrates the dielectric layers of the substrate from a top side to a bottom side of the substrate. Each via with the embedded conductive pillar functions as an isolation terminal. The signal transmission conductor sets are as such segregated by the isolation terminals and the isolation terminals provides two layers of shielding. With the present invention, there is no requirement of having a casing and the miniaturization of form factors of the electronic appliances is not compromised. The dual isolation terminals significantly suppress the strength and influence of interference produced by a signal transmission conductor.
Abstract:
A USB plug connector structure can use the same set of terminals to apply on different USB connector patterns, such as plate edge connector or wire edge connector, through the design of various soldering portions and base portions being positioned on the same plane. Furthermore, the common mode signals generated from first and second differential signal transmission conductor sets can be restrained by means of first and second grounding base portions of a grounding transmission conductor surrounding first and second differential signal transmission conduct sets. In addition, crosstalk interference generated from the first and second differential signal transmission conductor sets to a signal transmission conductor set can be similarly isolated through the first and second grounding base portions. Furthermore, a bended angle of each bended portion ranges from 120 to 150 degrees, thereby guide scattered radio frequency interference.
Abstract:
An application structure for an electric wave effect of transmission conductor solves a high frequency crosswalk problem through the following structures. The applicature structure includes at least one transmission conductor, and the application structure includes a first differential signal transmission conductor set, first signal transmission conductor set, second differential signal transmission conductor set, first ground transmission conductor, third differential signal transmission conductor set, second signal transmission conductor set, fourth differential signal transmission conductor set, first power source transmission conductor, second power transmission conductor and second ground transmission conductor. Whereby, the suppression of common mode signals, and the guiding-to-scatter suppression of radio wave interference (RFI), electromagnetic wave interference (EMI), crosstalk and electrostatic discharge (ESD) can be achieved between each two differential signal conductors through the first and second ground transmission conductors depending on the structure components mentioned above.
Abstract:
An electronic connector includes a transmission conductor group including two rows of plate-like contacts for insertion of a connector male portion in normal and reverse directions, a transmission conductor pin group, which is formed at a rear side of the transmission conductor group and arranged in a single row, a shielding housing, which receives therein the transmission conductor group, and an inclined cover section, which extends from the shielding housing to shield the transmission conductor pin group. As such, contacts of the transmission conductor group of the connector are provided in an arrangement of two rows so that mating between a male portion and a female portion can be made in a directionless manner, allowing for insertion in both normal and reverse directions. The transmission conductor pin group extending rearward from the transmission conductor group is set in an arrangement of a single row to maintain the convenience of manufacturing.
Abstract:
A USB Type-C connector includes a transmission conductor group arranged according to functions and positions associated with electric characteristics. The transmission conductor group includes a first signal transmission conductor group, a second signal transmission conductor group, and a power transmission conductor group. Considering the way of arrangement, the second signal transmission conductor group is located at one side of the first signal transmission conductor group and the power transmission conductor group is similarly located at one side of the first signal transmission conductor group. As such, with such an arrangement, advantages of improved interference resistance, bettered performance of high frequency, and large electric current can be achieved.
Abstract:
An electronic connector includes a transmission conductor group including two rows of plate-like contacts for insertion of a connector male portion in normal and reverse directions, a transmission conductor pin group, which is formed at a rear side of the transmission conductor group and arranged in a single row, a shielding housing, which receives therein the transmission conductor group, and an inclined cover section, which extends from the shielding housing to shield the transmission conductor pin group. As such, contacts of the transmission conductor group of the connector are provided in an arrangement of two rows so that mating between a male portion and a female portion can be made in a directionless manner, allowing for insertion in both normal and reverse directions. The transmission conductor pin group extending rearward from the transmission conductor group is set in an arrangement of a single row to maintain the convenience of manufacturing.