Abstract:
An aircraft service information handling system comprises an input module operable to collect field service narrative data. A natural language data extraction module extracts problem data and related solution data from the narrative data, and a database module populates an aircraft service information database with the extracted problem data and the related extracted solution data. The database module further searches the database for populated problem data, and retrieves the related populated solution data.
Abstract:
An aircraft service information handling system comprises an input module operable to collect field service narrative data. A natural language data extraction module extracts problem data and related solution data from the narrative data, and a database module populates an aircraft service information database with the extracted problem data and the related extracted solution data. The database module further searches the database for populated problem data, and retrieves the related populated solution data.
Abstract:
An improved fault detection system and method is provided. The fault detection system and method combines the use of discrimination and representation based feature extraction to reliably detect symptoms of faults in turbine engines. Specifically, the fault detection system and method uses a kernel-based Maximum Representation Discrimination Features (MRDF) technique to detect symptoms of fault in turbine engines. The kernel-based MRDF system and method combines the use of discriminatory features and representation features in historical sensor data to facilitate feature extraction and classification of new sensor data as indicative fault in the turbine engine. Furthermore, the kernel-based MRDF technique facilitates the uncovering of nonlinear features in the sensor data, thus improving the reliability of the fault detection.
Abstract:
A system and method for fault detection is provided. The fault detection system provides the ability to detect symptoms of fault in turbine engines and other mechanical systems that have nonlinear relationships. The fault detection system uses a neural network to perform a data representation and feature extraction where the extracted features are analogous to principal components derived in a principal component analysis. This neural network data representation analysis can then be used to determine the likelihood of a fault in the system.
Abstract:
A system includes more sensors configured to measure one or more characteristics of rotating equipment and a blind fault detection device. The blind fault detection device includes an input interface configured to receive at least one input signal from the one or more sensors. The blind fault detection device also includes a processing unit configured to identify a fault in the rotating equipment using the at least one input signal. The blind fault detection device further includes an output interface configured to provide an indicator identifying the fault. The processing unit is configured to identify the fault by determining at least one family of frequencies related to at least one sensor point, determining an average energy for the at least one sensor point based on the at least one family of frequencies, and comparing the average energy to a baseline value.
Abstract:
A system includes more sensors configured to measure one or more characteristics of rotating equipment and a blind fault detection device. The blind fault detection device includes an input interface configured to receive at least one input signal from the one or more sensors. The blind fault detection device also includes a processing unit configured to identify a fault in the rotating equipment using the at least one input signal. The blind fault detection device further includes an output interface configured to provide an indicator identifying the fault. The processing unit is configured to identify the fault by determining at least one family of frequencies related to at least one sensor point, determining an average energy for the at least one sensor point based on the at least one family of frequencies, and comparing the average energy to a baseline value.
Abstract:
A method for benchmarking diagnostic algorithms for a particular application is provided. The diagnostic algorithms are rank ordered based on a specified criterion so as to weed out weak algorithms, selecting more robust algorithms, defined in some sense, for deployment. This is realized by evaluating various parameters subsequently mentioned. A normalized product entropy ratio parameter is obtained. A performance parameter vector is fixed to define a plurality of sensitivity parameters including a plurality of threshold parameters and a plurality of data parameters. The plurality of threshold parameters and the plurality of data parameters are perturbed to obtain a threshold sensitivity parameter and a data sensitivity parameter.
Abstract:
An aircraft service information handling system comprises an input module operable to collect field service narrative data. A natural language data extraction module extracts problem data and related solution data from the narrative data, and a database module populates an aircraft service information database with the extracted problem data and the related extracted solution data. The database module further searches the database for populated problem data, and retrieves the related populated solution data.
Abstract:
A method includes receiving an input signal containing information associated with a rolling element bearing and/or a piece of equipment containing the rolling element bearing. The method also includes decomposing the input signal into a frequency-domain signal and determining at least one family of frequencies corresponding to at least one failure mode of the rolling element bearing. The method further includes generating a reconstructed input signal using the at least one family of frequencies and the frequency-domain signal. In addition, the method includes determining, using the reconstructed input signal, an indicator identifying an overall health of the rolling element bearing. The indicator could be determined using a baseline signal associated with either (i) normal operation of the rolling element bearing and/or the piece of equipment or (ii) defective operation of the rolling element bearing and/or the piece of equipment (where a severity of the defective operation will increase over time).
Abstract:
A method for benchmarking diagnostic algorithms for a particular application is provided. The diagnostic algorithms are rank ordered based on a specified criterion so as to weed out weak algorithms, selecting more robust algorithms, defined in some sense, for deployment. This is realized by evaluating various parameters subsequently mentioned. A normalized product entropy ratio parameter is obtained. A performance parameter vector is fixed to define a plurality of sensitivity parameters including a plurality of threshold parameters and a plurality of data parameters. The plurality of threshold parameters and the plurality of data parameters are perturbed to obtain a threshold sensitivity parameter and a data sensitivity parameter.