Abstract:
Apparatuses and methods related to altering the timing of command signals for executing commands is disclosed. One such method includes calculating a forward path delay of a clock circuit in terms of a number of clock cycles of an output clock signal provided by the clock circuit and adding a number of additional clock cycles of delay to a forward path delay of a signal path. The forward path delay of the clock circuit is representative of the forward path delay of the signal path and the number of additional clock cycles is based at least in part on the number of clock cycles of forward path delay.
Abstract:
A clock synchronization system and method avoids output clock jitter at high frequencies and also achieves a smooth phase transition at a boundary of coarse and fine delays. The system may use a single coarse delay line configured to generate two intermediate clocks from an input reference clock and having a fixed phase difference therebetween. The coarse delay line may have a hierarchical or a non-hierarchical structure. A phase mixer receives these two intermediate clocks and generates a final output clock having a phase between phases of the intermediate clocks. The coarse shifting in the delay line at high clock frequencies does not affect the phase relationship between the intermediate clocks fed into the phase mixer. The output clock from the phase mixer is time synchronized with the input reference clock and does not exhibit any jitter or noise even at high clock frequency inputs.
Abstract:
Disclosed herein is a VDL/DLL architecture in which the power supply to the VDL, VccVDL, is regulated at least as a function of the entry point of the input signal (ClkIn) into the VDL. Specifically, VccVDL is regulated to be higher when the delay through the VDL is relatively small (when the entry point is toward the right (or minimum delay) edge of the VDL) and is reduced when the delay is relatively high (when the entry point is toward the left (or maximum delay) edge of the VDL). This provides for graduated delays across the stages of the VDL, but without the need to design each stage separately. Other benefits include a VDL/DLL design operable over a wider range of frequencies, and a reduced number of stages, including a reduced number of buffer stages. Moreover, when the disclosed technique is used, buffer stages may be dispensed with altogether. Additionally, the disclosed VDL architecture can be used in any situation where it might be advantageous to delay a signal through a variable delay as a function of VDL entry point.
Abstract:
A read latency control circuit is described having a clock synchronization circuit and a read latency control circuit. The clock synchronization circuit includes an adjustable delay line to generate an output clock signal whose phase is synchronized with the phase of the input clock signal. The read latency control circuit captures a read command signal relative to the timing of the input clock signal and outputs the read command signal relative to the timing of the output clock signal such that the read command signal is outputted indicative of a specified read latency.
Abstract:
Delay circuitry is described that includes clock mixing circuitry to provide a selectable propagation time. Output signals from the mixing circuitry are selectively coupled through a variable delay line to synchronize two clock signals.
Abstract:
Disclosed herein is a VDL/DLL architecture in which the power supply to the VDL, VccVDL, is regulated at least as a function of the entry point of the input signal (ClkIn) into the VDL. Specifically, VccVDL is regulated to be higher when the delay through the VDL is relatively small (when the entry point is toward the right (or minimum delay) edge of the VDL) and is reduced when the delay is relatively high (when the entry point is toward the left (or maximum delay) edge of the VDL). This provides for graduated delays across the stages of the VDL, but without the need to design each stage separately. Other benefits include a VDL/DLL design operable over a wider range of frequencies, and a reduced number of stages, including a reduced number of buffer stages. Moreover, when the disclosed technique is used, buffer stages may be dispensed with altogether. Additionally, the disclosed VDL architecture can be used in any situation where it might be advantageous to delay a signal through a variable delay as a function of VDL entry point.
Abstract:
Delay circuitry is described that includes clock mixing circuitry to provide a selectable propagation time. Output signals from the mixing circuitry are selectively coupled through a variable delay line to synchronize two clock signals.
Abstract:
Apparatuses and methods related to adjusting a minimum forward path delay of a signal path are disclosed. One such signal path includes a signal path having a minimum forward path delay, wherein the signal path is configured to adjust the minimum forward path delay based at least in part on a selected latency and a propagation delay of the minimum forward path delay. An example method includes reducing a forward path delay of a command path by at least one clock cycle of a clock signal to provide a command according to a selected latency responsive to a count value representative of a minimum forward path delay of the command path being greater than a maximum count value for the selected latency.
Abstract:
Disclosed herein is a VDL/DLL architecture in which the power supply to the VDL, VccVDL, is regulated at least as a function of the entry point of the input signal (ClkIn) into the VDL. Specifically, VccVDL is regulated to be higher when the delay through the VDL is relatively small (when the entry point is toward the right (or minimum delay) edge of the VDL) and is reduced when the delay is relatively high (when the entry point is toward the left (or maximum delay) edge of the VDL). This provides for graduated delays across the stages of the VDL, but without the need to design each stage separately. Other benefits include a VDL/DLL design operable over a wider range of frequencies, and a reduced number of stages, including a reduced number of buffer stages. Moreover, when the disclosed technique is used, buffer stages may be dispensed with altogether. Additionally, the disclosed VDL architecture can be used in any situation where it might be advantageous to delay a signal through a variable delay as a function of VDL entry point.
Abstract:
Apparatuses and methods related to altering the timing of command signals for executing commands is disclosed. One such method includes calculating a forward path delay of a clock circuit in terms of a number of clock cycles of an output clock signal provided by the clock circuit and adding a number of additional clock cycles of delay to a forward path delay of a signal path. The forward path delay of the clock circuit is representative of the forward path delay of the signal path and the number of additional clock cycles is based at least in part on the number of clock cycles of forward path delay.