Abstract:
A system and method for effectively supporting a data transmission procedure includes a phase-locked loop with a phase detector that compares a clock signal and input data to generate a phase error signal for adjusting the clock signal that is generated from a voltage-controlled oscillator. The phase detector includes a positive-edge detector circuit that generates an edge detection signal P to indicate whether data transitions are present in the input data. The phase detector also includes a lead/lag indicator circuit that generates a lead/lag indicator signal T to indicate whether the clock signal is early or late with respect to the input data.
Abstract:
An apparatus for implementing a front end circuit for a transimpedance amplifier includes a front end core that receives an input signal from a photo diode. The front end core responsively generates a balanced output signal to downstream devices. A power supply provides a supply voltage to the front end circuit. In accordance with the present invention, a current source is located between the supply voltage the front end core to thereby isolate the front end core from disturbances on the power supply. This biasing arrangement advantageously provides an improved power supply rejection ratio for the front end circuit.
Abstract:
A system and method for effectively performing a clock signal distribution procedure includes a clock generator configured to generate one or more clock signals that include electronic timing information. A clock load utilizes the electronic timing information from the clock signals to synchronize appropriate system processes. Capacitive coupling means are provided in a series configuration for transferring the clock signals from the clock generator to the clock load in accordance with an alternating-current direct-drive technique.
Abstract:
An apparatus and method for effectively implementing a unit Gm cell includes an input P that receives an input P signal and an input N that receives an input N signal. The unit Gm cell further includes an output P that generates an output P signal that is connected through a first bias resistor to the input N. The unit Gm cell also includes an output N that generates an output N signal that is connected through a second bias resistor to the input P. The unit Gm cell features level-shifting resistors that cause the output P signal and the output N signal to be at different respective voltage levels. A Vcore supply voltage may thus be reduced by a voltage potential across the level-shifting resistors to operate the unit Gm cell with a reduced Vcore supply voltage.
Abstract:
A system and method for effectively supporting a data transmission procedure includes a phase interpolator with a modular array of unit phase interpolators that each receives a respective input clock signal that is phase-shifted with respect to other input clock signals received by the remaining unit phase interpolators. The unit phase interpolators responsively generate corresponding UPI output signals that are summed together to produce a receiver clock signal. The phase interpolator receives a phase control word that includes a UPI selection segment and a UPI output-control segment. The phase interpolator utilizes the UPI selection segment to selectively activate pairs of the unit phase interpolators. The phase interpolator also utilizes the UPI output-control segment for controlling the UPI output signals to thereby adjust phase characteristics of the receiver clock signal.
Abstract:
A system and method for effectively supporting a data transmission procedure includes a phase-locked loop with a phase detector that compares a clock signal and input data to generate a phase error signal for adjusting the clock signal that is generated from a voltage-controlled oscillator. The phase detector includes a positive-edge detector circuit that generates an edge detection signal P to indicate whether data transitions are present in the input data. The phase detector also includes a lead/lag indicator circuit that generates a lead/lag indicator signal T to indicate whether the clock signal is early or late with respect to the input data.
Abstract:
A system and method for effectively supporting a data transmission procedure includes a phase-locked loop with a phase detector that compares a clock signal and input data to generate a phase error signal for adjusting the clock signal that is generated from a voltage-controlled oscillator. The phase detector includes a positive-edge detector circuit that generates an edge detection signal P to indicate whether data transitions are present in the input data. The phase detector also includes a lead/lag indicator circuit that generates a lead/lag indicator signal T to indicate whether the clock signal is early or late with respect to the input data.
Abstract:
A system and method for effectively utilizing a dual-mode phase-locked loop to support a data transmission procedure includes a voltage controlled oscillator that generates a receiver clock signal in response to VCO input control signals. A binary phase detector generates a BPD output signal during a BPD mode by comparing input data and the receiver clock signal. In addition, a lock-assist circuit generates a PFD output signal during a PFD mode by comparing a reference signal and a divided receiver clock signal. A loop filter performs a BPD transfer function to generate a VCO input control signal from the BPD output signal during the BPD mode. The same loop filter also performs a PFD transfer function to generate the VCO input control signal from the PFD output signal during the PFD mode.
Abstract:
An apparatus for implementing a front end core for a transimpedance amplifier includes an input transimpedance stage that receives an FE core input signal and responsively generates an output transimpedance gain signal. A first output gain stage receives the output transimpedance gain signal and responsively generates an FE core output signal. A phase inverter stage also receives the output transimpedance gain signal and responsively generates an inverted output signal. A second output gain stage then receives the inverted output signal and responsively generates an inverted FE core output signal.
Abstract:
An apparatus and method for effectively implementing a unit Gm cell includes an input P that receives an input P signal and an input N that receives an input N signal. The unit Gm cell further includes an output P that generates an output P signal that is connected through a first bias resistor to the input N. The unit Gm cell also includes an output N that generates an output N signal that is connected through a second bias resistor to the input P. The unit Gm cell features level-shifting resistors that cause the output P signal and the output N signal to be at different respective voltage levels. A Vcore supply voltage may thus be reduced by a voltage potential across the level-shifting resistors to operate the unit Gm cell with a reduced Vcore supply voltage.