Abstract:
A system for on-chip testing of embedded memories using Address Space Identifier (ASI) bus in Scalable Processor ARChitecture (SPARC) microprocessors. An integrated circuit includes a plurality of memory arrays, Address Space Identifier (ASI) bus interface logic connected by an ASI bus to the plurality of memory arrays, and a memory control unit and a memory built-in self-test (MBIST) engine connected to the ASI bus interface logic. Rather than direct access, the MBIST engine utilizes the ASI bus interface logic and the ASI bus to perform memory testing. The MBIST engine, programmed with memory array parameters, includes a programmable state machine controller to which is connected a programmable data generator, a programmable address generator, and a programmable comparator. The data generator provides data as appropriate. The address generator provides addresses as appropriate. The comparator provides test results information for the particular test situation. The MBIST engine generates a test status output.
Abstract:
A boundary scan cell design which places the multiplexor before the functional flip-flip on the functional line path, reducing the multiplexor delay in the critical path. This optimizes the multiplexor and functional flip-flop orientation, allowing for a significant reduction in the time required from output of the functional flip-flop to a pin or to the interior of the CPU (the clock to q delay). In order to ensure that boundary scan mode functions properly, the functional flip-flop may be designed to act as a buffer, i.e. become transparent, when the boundary scan cell is in boundary scan mode.
Abstract:
A boundary scan cell design which places the multiplexor before the functional flip-flip on the functional line path, reducing the multiplexor delay in the critical path. This optimizes the multiplexor and functional flip-flop orientation, allowing for a significant reduction in the time required from output of the functional flip-flop to a pin or to the interior of the CPU (the clock to q delay). In order to ensure that boundary scan mode functions properly, the functional flip-flop may be designed to act as a buffer, i.e. become transparent, when the boundary scan cell is in boundary scan mode.
Abstract:
In one embodiment, a timing slave packet switching device receives a received primary reference clock signal. The timing slave packet switching device communicates a first plurality of packet network synchronization packets over a packet switching network with a remote primary reference clock source and derives an over-network clock based on the first plurality of packet network synchronization packets. A phase offset between the phase of the over-network clock and the phase of the received primary reference clock signal is determined and typically stored in non-volatile storage. Subsequent to said determining the phase offset, the timing slave packet switching device communicates a second plurality of packet network synchronization packets over the packet switching network with the remote primary reference clock source and adjusts the phase of a clock derived from the second plurality of packet network synchronization packets based on the phase offset.
Abstract:
An integrated circuit (IC) having a memory built-in self-test (MBIST) controller. The IC includes an MBIST controller and a plurality of memory arrays. One or more the memory arrays has a different physical organization with respect to other ones of the memory arrays. The MBIST controller is configured to generate a logical address of a memory under test. The MBIST controller is further configured to permute the bits to produce a physical address. The user programmed permutation enables a simple address incrementer to create an address sequence that traverses the physical organization of the memory in accordance with the type of desired test.
Abstract:
A method and apparatus for conveying test stimulus data from an ATE system to an integrated circuit (IC) via a plesiochronous interconnect. The IC includes a core logic unit and a first receiver coupled to the core logic unit by a first data path. The first receiver includes an input having an interconnect coupled thereto. In a normal mode of operation, the first receiver is configured to receive data transmitted plesiochronously over the interconnect and to convey the data, via the first data path, to the core logic unit. The integrated circuit also includes a second data path coupled between the core logic unit and the interconnect. In a test mode, the core logic unit is configured to receive test stimulus data conveyed synchronously over the second data path, wherein the test stimulus data is received by the IC from the ATE via the interconnect.
Abstract:
A method and apparatus for conveying test stimulus data from an ATE system to an integrated circuit (IC) via a plesiochronous interconnect. The IC includes a core logic unit and a first receiver coupled to the core logic unit by a first data path. The first receiver includes an input having an interconnect coupled thereto. In a normal mode of operation, the first receiver is configured to receive data transmitted plesiochronously over the interconnect and to convey the data, via the first data path, to the core logic unit. The integrated circuit also includes a second data path coupled between the core logic unit and the interconnect. In a test mode, the core logic unit is configured to receive test stimulus data conveyed synchronously over the second data path, wherein the test stimulus data is received by the IC from the ATE via the interconnect.
Abstract:
An electrical circuit includes a flip-flop, a first multiplexer, a second flip-flop, a third flip-flop, and output storage element including a second multiplexer and a fourth flip-flop. The first flip-flop, clocked functional clock signal, receives a functional signal. The first multiplexer receives the output of the first flip-flop and a test mode shift-in signal, and outputs one of them based on the state of a select input. The second flip-flop, clocked by a test clock signal, receives the output of the first multiplexer. The third flip-flop, clocked by a second test clock signal, receives the output of the second flip-flop. The second multiplexer receives the functional signal and the output of the third flip-flop, and outputs one of them based on a mode select input signal. The fourth flip-flop, clocked by a pulse-controlled functional clock signal, receives the output of the second multiplexer.
Abstract:
A method and apparatus for test of asynchronous pipelines. An asynchronous data pipeline includes first and second pluralities of pipeline stages in an alternating sequence. Each of the pipeline stages includes a control circuit, a latch circuit configured to latch data responsive to an indication from the control circuit, and a combinational logic circuit coupled to receive data from an output of the latch circuit. Each of the latch circuits is scannable. The latch circuits of the first and second pluralities of pipeline stages form a data scan chain configured to load test data into the combinational logic circuits during testing of the data pipeline. The data pipeline further includes a control scan chain configured to load control data for operating the control circuits during testing of the data pipeline. Testing of the data pipeline can include independent testing of the control portion or the data portion.
Abstract:
A method and system for testing a chip at functional (operational) speed. The chip may include an integrated circuit having a number flops and memory arrays arranged into logically functioning elements. Additional flops may be included to output to one or more of the other flops in order to provide inputs to the flops at the functional speed such that the receiving flops executing at the functional speed according to the received input at a next functional clock pulse to facilitate testing the chip at the functional speed.