Abstract:
Circuit arrangement including an interface, a protection circuit and a measurement circuit. The interface is configured to receive a signal. The protection circuit is coupled to the interface. The protection circuit is configured to limit a voltage provided by the interface to a protection voltage. The measurement circuit is coupled to the protection circuit and configured to provide at least one of a signal of a first measurement type and a signal of a second measurement type if a voltage provided by the interface is higher than the protection voltage and configured to provide a signal of a second measurement type if the voltage provided by the interface is lower than the protection voltage.
Abstract:
A fault protection circuit for an alternator is provided for preventing faults such as a prolonged full-field condition in the alternator. The fault protection circuit includes a safety switch that is opened when the alternator output voltage becomes too high, as may occur during a full-field condition caused by an electrical short, or when some other fault is detected within the alternator. The opening of this safety switch disconnects a supply voltage feeding an excitation current control switch. The excitation current control switch normally adjusts an excitation current provided to a rotor in the alternator, in order to regulate a voltage output from the alternator. By providing a safety switch that disconnects the supply voltage for the rotor excitation in the alternator, the alternator output voltage may be prevented from reaching excessive levels that may damage devices in an electrical system and a battery coupled to the alternator.
Abstract:
An alternator is described that is configured to provide a current for powering one or more loads. The alternator includes an output port configured to output the current for powering the one or more loads, and one or more current sensors configured to measure a current level of at least a portion of the current being output via the output port to the one or more loads, The alternator further includes one or more communication ports configured to transmit information based on the current level measured by the one or more current sensors.
Abstract:
One aspect of the invention relates to a network node for connecting to a Local Interconnect Network (LIN). In accordance with one example of the present invention, the network node includes a bus terminal which is operably coupled to a data line for receiving a data signal, which represents serial data, via that data line. The data signal is a binary signal having high and low signal levels. The network node further includes a receiver circuit which employs a comparator to compare the data signal with a reference signal. The comparator generates a binary output signal representing the result of the comparison. The network node also includes a measurement circuit that receives the data signal and provides a first voltage signal such that it represents the high signal level of the data signal.
Abstract:
In some examples, an alternator control device includes interface configured to receive a voltage signal from an engine control device, pull-down circuitry, and a switch electrically connected between the interface and the pull-down circuitry. The alternator control device further includes processing circuitry configured to determine that the voltage signal is higher than a threshold voltage level and to activate the switch to electrically connect the interface to the pull-down circuitry in response to determining that the voltage signal is higher than the threshold voltage level. The processing circuitry is further configured to determine that, at least a threshold time duration after activating the switch, the voltage signal is higher than the threshold voltage level and to refrain from delivering the excitation current based on determining that, at least the threshold time duration after activating the switch, the voltage signal is higher than a threshold voltage level.
Abstract:
In some examples, a detection circuit is configured to detect a brushfire in a power system based on an electrical signal from the power system. The detection circuit is further configured to set a bit in response to detecting the brushfire.
Abstract:
In some examples, a detection circuit is configured to detect a brushfire in a power system based on an electrical signal from the power system. The detection circuit is further configured to set a bit in response to detecting the brushfire.
Abstract:
An excitation current-limited power generator includes a digital interface configured to be coupled to an engine control unit (ECU), a regulator coupled configured to be coupled to an excitation current input of an alternator, the excitation current controlling current generated by the alternator, a frequency sensor configured to measuring rotation speed of the alternator, and memory storing a communicated limit received by the digital interface and a first permanent limit, the regulator configured to limit the excitation current to the lesser of the first permanent limit and the communicated limit.
Abstract:
A fault protection circuit for an alternator is provided for preventing faults such as a prolonged full-field condition in the alternator. The fault protection circuit includes a safety switch that is opened when the alternator output voltage becomes too high, as may occur during a full-field condition caused by an electrical short, or when some other fault is detected within the alternator. The opening of this safety switch disconnects a supply voltage feeding an excitation current control switch. The excitation current control switch normally adjusts an excitation current provided to a rotor in the alternator, in order to regulate a voltage output from the alternator. By providing a safety switch that disconnects the supply voltage for the rotor excitation in the alternator, the alternator output voltage may be prevented from reaching excessive levels that may damage devices in an electrical system and a battery coupled to the alternator.
Abstract:
A fault protection circuit for an alternator is provided for preventing faults such as a prolonged full-field condition in the alternator. The fault protection circuit includes a safety switch that is opened when the alternator output voltage becomes too high, as may occur during a full-field condition caused by an electrical short, or when some other fault is detected within the alternator. The opening of this safety switch disconnects a supply voltage feeding an excitation current control switch. The excitation current control switch normally adjusts an excitation current provided to a rotor in the alternator, in order to regulate a voltage output from the alternator. By providing a safety switch that disconnects the supply voltage for the rotor excitation in the alternator, the alternator output voltage may be prevented from reaching excessive levels that may damage devices in an electrical system and a battery coupled to the alternator.