Abstract:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
Abstract:
In various exemplary embodiments, optically sensitive devices comprise a plurality of pixel regions. Each pixel region includes an optically sensitive layer over a substrate and has subpixel regions for separate wavebands. A pixel circuit comprises a charge store and a read out circuit for each subpixel region. Circuitry is configured to select a plurality of subpixel elements from different pixels that correspond to the same waveband for simultaneous reading to a shared read out circuit.
Abstract:
Various embodiments comprise apparatuses and methods including a light sensor. The light sensor includes a first electrode, a second electrode, a third electrode, and a light-absorbing semiconductor in electrical communication with each of the first electrode, the second electrode, and the third electrode. A light-obscuring material to substantially attenuate an incidence of light onto a portion of the light-absorbing semiconductor is disposed between the second electrode and the third electrode. An electrical bias is to be applied between the second electrode, and the first and the third electrodes and a current flowing through the second electrode is related to the light incident on the light sensor. Additional methods and apparatuses are described.
Abstract:
In various exemplary embodiments, optically sensitive devices comprise a plurality of pixel regions. Each pixel region includes an optically sensitive layer over a substrate and has subpixel regions for separate wavebands. A pixel circuit comprises a charge store and a read out circuit for each subpixel region. Circuitry is configured to select a plurality of subpixel elements from different pixels that correspond to the same waveband for simultaneous reading to a shared read out circuit.
Abstract:
In various embodiments, an imaging system and method are provided. In an embodiment, the system comprises a first image sensor array, a first optical system to project a first image on the first image sensor array, the first optical system having a first zoom level. A second optical system is to project a second image on a second image sensor array, the second optical system having a second zoom level. The second image sensor array and the second optical system are pointed in the same direction as the first image sensor array and the first optical system. The second zoom level is greater than the first zoom level such that the second image projected onto the second image sensor array is a zoomed-in portion of the first image projected on the first image sensor array.
Abstract:
A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
Abstract:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
Abstract:
In various embodiments, an image sensor and method of using an image sensor are described. In an example embodiment, the image sensor comprises a semiconductor substrate and a plurality of pixel regions with each pixel region comprising an optically sensitive material over the substrate and positioned to receive light. There is a bias electrode for each pixel region, with the bias electrode configured to provide a bias voltage to the optically sensitive material of the respective pixel region. Also included is a pixel circuit for each pixel region with each pixel circuit comprising a charge store formed on the semiconductor substrate and a read out circuit, the charge store being in electrical communication with the optically sensitive material of the respective pixel region. The pixel circuit is configured to reset the voltage on the charge store to a reset voltage during a reset period, to integrate charge from the optically sensitive material to the charge store during an integration period, and to read out a signal from the charge store during a read out period. The pixel circuit includes a reference voltage node to be coupled to the charge store during the reset period and the read out circuit during the read out period where a reference voltage is applied to the reference voltage node and is configured to be varied during the operation of the pixel circuit.
Abstract:
An image sensor device includes a semiconductor substrate, including an array of pixel circuits, which define respective pixels of the device. A photosensitive layer is formed over the semiconductor substrate and configured to transfer charge to the pixel circuits in response to light incident on the photosensitive layer. An upper layer is formed over the photosensitive layer and is at least partially transparent to the light. Opaque partitions extend vertically through the upper layer in a checkerboard pattern aligned with the pixels in the array.
Abstract:
Image sensors and methods of using image sensors are disclosed. In an embodiment, the image sensor includes pixel regions having optically sensitive material (OSM). A bias voltage is provided to the OSM via a bias electrode for each pixel region. A pixel circuit (PC) for each pixel region includes a read out circuit and a charge store (CS) coupled to the OSM of the respective pixel region. The PC resets voltage on the CS to a reset voltage during a reset period, integrates charge from the OSM to the CS during an integration period, and reads out a signal from the CS during a read out period. The PC includes a reference voltage node coupled to the CS during the reset period and the read out circuit during the read out period, a reference voltage is applied to the reference voltage node and is varied during operation of the PC.