Abstract:
A solid-state image pickup device comprising a semiconductor substrate which comprises a substrate body containing P-type impurities and a first N-type semiconductor layer containing N-type impurities, the first N-type semiconductor layer being provided on the substrate body, and including a first P-type semiconductor layer which contains p-type impurities, and which is located on the substrate body, a plurality of optical/electrical conversion portions formed of second N-type semiconductor layers which are provided independently of each other in respective positions in a surface portion of the first N-type semiconductor layer, and a plurality of second P-type semiconductor layers which are formed to surround the optical/electrical conversion portions, which are provided along element isolation regions provided in respective positions in the surface portion of the first N-type semiconductor layer, and which continuously extend from the surface portion of the first N-type semiconductor layer to a surface portion of the first P-type semiconductor layer.
Abstract:
A solid-state imaging device has an imaging region in which unit cells, each of which includes a photoelectric conversion section and a signal scanning circuit section, are disposed on a semiconductor substrate in a two-dimensional manner. The signal scanning circuit section is composed of a plurality of transistors. At least part of a gate contact of each transistor in the signal scanning circuit section is formed on an active region of each transistor.
Abstract:
A solid-state image pickup device comprising a semiconductor substrate which comprises a substrate body containing P-type impurities and a first N-type semiconductor layer containing N-type impurities, the first N-type semiconductor layer being provided on the substrate body, and including a first P-type semiconductor layer which contains p-type impurities, and which is located on the substrate body, a plurality of optical/electrical conversion portions formed of second N-type semiconductor layers which are provided independently of each other in respective positions in a surface portion of the first N-type semiconductor layer, and a plurality of second P-type semiconductor layers which are formed to surround the optical/electrical conversion portions, which are provided along element isolation regions provided in respective positions in the surface portion of the first N-type semiconductor layer, and which continuously extend from the surface portion of the first N-type semiconductor layer to a surface portion of the first P-type semiconductor layer.
Abstract:
The image pickup system includes: MOS sensors arranged in an image pickup region of a semiconductor substrate in the form of a matrix and having photoelectric transfer layers; a peripheral circuit part formed in a region of the semiconductor substrate except for the image pickup region and having a driving circuit for driving the MOS sensors and a signal processing circuit for processing output signals from the MOS sensors; and microlenses, formed on the photoelectric transfer layers via a first insulating film, for condensing picture signals on the photoelectric transfer layers, wherein the driving circuit and the signal processing circuit in the peripheral circuit part are covered by a second insulating film, and the distance between the surface of the first insulating film and the semiconductor substrate is shorter than the distance between the surface of a second insulating film and the semiconductor substrate.
Abstract:
A solid-state image sensor comprises a semiconductor substrate, a photoelectric conversion portion formed above the semiconductor substrate, and noise cancelers each formed, adjacent to the photoelectric conversion portion, on the semiconductor substrate through an insulating film, for removing noise of a signal read from the photoelectric conversion portion, wherein the semiconductor substrate has a conductive type opposite to a conductive type of a charge of the signal, and has a first region where concentration of impurities for determining the conductive type is high and a second region where concentration of the impurities on the first region is low.
Abstract:
A solid-state imaging device includes an array of photosensitive cells, each of which includes a photoelectric conversion section, which is arranged on the surface of a substrate and has a light-receiving opening. The photoelectric conversion section generates a packet of electrical carriers in response to the amount of incident light thereinto through the opening. A charge transfer section is arranged adjacent to the photoelectric conversion section on the substrate surface. This transfer section defines thereunder a transfer channel region that extends linearly in a predetermined direction in the substrate surface, and causes the carriers thus obtained to move sequentially. A light-shield section is arranged to cover the photoelectric conversion section except the opening, for preventing an incident light coming through the opening from being introduced into the transfer channel region as a leak component, by cutting off an internal reflection path of the leak component thereto.
Abstract:
According to one embodiment, a solid-state image sensor includes a semiconductor substrate including a first surface on which light enters, and a second surface opposite to the first surface, a pixel region formed in the semiconductor substrate, and including a photoelectric conversion element which converts the incident light into an electrical signal, a peripheral region formed in the semiconductor substrate, and including a circuit which controls an operation of the element in the pixel region, a plurality of interconnects which are formed in a plurality of interlayer insulating films stacked on the second surface, and are connected to the circuit, and a support substrate formed on the stacked interlayer insulating films and the interconnects. An uppermost one of the interconnects formed in an uppermost one of the interlayer insulating films is buried in a first trench formed in the uppermost interlayer insulating film.
Abstract:
A solid-state imaging device includes an imaging element, an external terminal, an insulating film, a penetration electrode, a first insulating interlayer, a first electrode, and a first contact plug. The imaging element is formed on a first main surface of a semiconductor substrate. The external terminal is formed on a second main surface facing the first main surface of the substrate. The insulating film is formed in a through-hole formed in the substrate. The penetration electrode is formed on the insulating film in the through-hole and electrically connected to the external terminal. The first insulating interlayer is formed on the first main surface of the substrate and the penetration electrode. The first electrode is formed on the first insulating interlayer. The first contact plug is formed in the first insulating interlayer between the penetration electrode and the first electrode to electrically connect the penetration electrode and the first electrode.
Abstract:
An n/p semiconductor substrate is formed in such a manner that an n type semiconductor layer is deposited on a p+ semiconductor substrate. An imaging area including a plurality of n type semiconductor regions making photoelectric conversion and a plurality of p type semiconductor region for isolation formed around the n type semiconductor regions, is formed in the n/p semiconductor substrate. The n type semiconductor layer is divided into an upper layer and a lower layer. A second n type semiconductor region is formed to connect to the p+ type semiconductor substrate from a surface of the n/p semiconductor substrate in a peripheral region of the imaging area.
Abstract:
An imaging element is formed on the first main surface of a semiconductor substrate. An external terminal is formed on the second main surface of the semiconductor substrate. A through-hole electrode is formed in a through hole formed in the semiconductor substrate. A first electrode pad is formed on the through-hole electrode in the first main surface. An interlayer insulating film is formed on the first electrode pad and on the first main surface. A second electrode pad is formed on the interlayer insulating film. A passivation film is formed on the second electrode pad and the interlayer insulating film, and has an opening which exposes a portion of the second electrode pad. A contact plug is formed between the first and second electrode pads in a region which does not overlap the opening when viewed in a direction perpendicular to the surface of the semiconductor substrate.