Abstract:
A communication system having self or internal calibration is disclosed. The system includes an antenna tuner, a mismatch component, a receiver, and a strength indicator. The antenna tuner is configured to mismatch an antenna according to a mismatch code. The mismatch code includes or alters antenna characteristics of the antenna. The mismatch component is configured to provide the mismatch code to the antenna tuner. The strength indicator is configured to measure a strength of the received signal.
Abstract:
Examples provide a control circuit and a control apparatus, a radio frequency circuit and a radio frequency apparatus, a transceiver, a mobile terminal, methods and computer programs for determining calibration values for a radio frequency circuit. A control circuit (10) is configured to determine calibration values for a radio frequency circuit (100) with a transmit unit (102) coupled to an antenna (104) through an antenna tuner (106). The control circuit (10) is configured to determine the calibration values for the radio frequency circuit (100) based on at least two impedance measurements and based on at least two antenna tuner configurations.
Abstract:
A method (300) for determining inter-modulation distortions products of a mixing stage includes: driving (301) a signal input of the mixing stage based on an input signal, wherein an amplitude of the input signal is switched between a first level and a second level, and wherein a frequency of switching the amplitude is smaller than a frequency of the input signal; detecting (302) at a signal output of the mixing stage a first output signal responsive to the driving of the signal input with the input signal, wherein the amplitude of the input signal is switched to the first level, and a second output signal responsive to the driving of the signal input with the input signal, wherein the amplitude of the input signal is switched to the second level; and determining (303) the inter-modulation distortions based on the first output signal and the second output signal.
Abstract:
A communication system having self or internal calibration is disclosed. The system includes an antenna tuner, a mismatch component, a receiver, and a strength indicator. The antenna tuner is configured to mismatch an antenna according to a mismatch code. The mismatch code includes or alters antenna characteristics of the antenna. The mismatch component is configured to provide the mismatch code to the antenna tuner. The strength indicator is configured to measure a strength of the received signal.
Abstract:
An apparatus for adjusting a component in a receiver system to eliminate distortion. The apparatus may include a receiver system and a tuning circuit. The receiver system may process a tracking signal to generate an output signal. The tracking signal may include a radio frequency (RF) signal and a test signal. The processing of the first tracking signal may introduce a distortion into the output signal. The tuning circuit may be operatively coupled to the receiver system. The tuning circuit may determine an adjustment value and send the adjustment value to the receiver system. The receiver system may adjust a component of the receiver system using the adjustment value to eliminate the distortion in a second RF signal that is caused by the component.
Abstract:
A method (300) for determining inter-modulation distortions products of a mixing stage includes: driving (301) a signal input of the mixing stage based on an input signal, wherein an amplitude of the input signal is switched between a first level and a second level, and wherein a frequency of switching the amplitude is smaller than a frequency of the input signal; detecting (302) at a signal output of the mixing stage a first output signal responsive to the driving of the signal input with the input signal, wherein the amplitude of the input signal is switched to the first level, and a second output signal responsive to the driving of the signal input with the input signal, wherein the amplitude of the input signal is switched to the second level; and determining (303) the inter-modulation distortions based on the first output signal and the second output signal.