Abstract:
An integrated circuit for outputting a function value, comprising a pattern matching circuit, configured to compare an input value and multiple transformed versions of the input value with a specified bit pattern, wherein the transformed versions of the input value or the specified bit pattern are created by repeated application of a transformation to the input value or the specified bit pattern, wherein the function is invariant under the transformation or wherein an inverse transformation exists for the transformation, by means of which a change in the function values that is caused by the transformation of the input values can be reversed, a selection circuit configured to select a function value depending on the matching result of the pattern matching circuit and the input value, and an output circuit configured to output a function value for the input value based on the selected function value.
Abstract:
A memory circuit may include a plurality of electrically programmable memory cells arranged in an electrically programmable non-volatile memory cell array along a plurality of rows and a plurality of columns, a plurality of word lines, each word line coupled with a plurality of word portions of the plurality of memory cells, each word portion configured to store a data word, and at least one overlay word line coupled with a plurality of overlay portions, each overlay portion including overlay memory cells, each of the plurality of overlay portions including an overlay word. The memory circuit is configured to read, for each of the plurality of word lines, from each of the word portions simultaneously with an overlay portion of the plurality of overlay portions, with an output of the read operation being a result of a logic operation performed on the data word and the overlay word.
Abstract:
A method of sending data is provided. The method may include, executed in a master, applying a first code to an address of an addressed data sink of a slave, thereby forming a master-encoded address, combining the data with the master-encoded address using a reversible function, thereby forming a data-address-combination, and sending the data-address-combination and the address from the master to the slave.
Abstract:
In various embodiments, a memory circuit is provided. The memory circuit may include a plurality of electrically programmable memory cells arranged in an electrically programmable non-volatile memory cell array along a plurality of rows and a plurality of columns, a plurality of word lines, each word line coupled with a plurality of word portions of the plurality of memory cells, wherein each word portion is configured to store a data word, and at least one overlay word line coupled with a plurality of overlay portions, each overlay portion comprising a plurality of overlay memory cells, wherein each of the plurality of overlay portions comprises an overlay word, wherein the memory circuit is configured to read, for each of the plurality of word lines, from each of the word portions simultaneously with an overlay portion of the plurality of overlay portions, thereby providing, as an output of the read operation, a result of a logic operation performed on the data word and the overlay word.
Abstract:
A memory circuit may include a plurality of electrically programmable memory cells arranged in a non-volatile memory cell array along a rows and columns, a plurality of word lines, each word line coupled with one or more memory cells, a plurality of non-volatile marking memory cells, wherein at least one word line of the plurality of word lines is associated with one or more marking memory cells, and a plurality of marking bit lines, each associated with marking memory cells, a plurality of marking source lines, each associated with marking memory cells, wherein, for marking memory cells, a physical connection from an associated marking source line and/or from an associated marking bit line to the marking memory cells defines those marking memory cells to a non-changeable state, wherein the marking memory cells are configured to identify the associated word line of respective marking memory cells in the non-changeable memory state.
Abstract:
Embodiments relate to systems and methods for authenticating devices and securing data. In embodiments, a session key for securing data between two devices can be derived as a byproduct of a challenge-response protocol for authenticating one or both of the devices.
Abstract:
A method is provided for accessing a memory via at least one address, wherein the at least one address comprises a codeword of a code. Corresponding devices are also described.
Abstract:
A method of sending data is provided. The method may include, executed in a master, applying a first code to an address of an addressed data sink of a slave, thereby forming a master-encoded address, combining the data with the master-encoded address using a reversible function, thereby forming a data-address-combination, and sending the data-address-combination and the address from the master to the slave.
Abstract:
According to one embodiment, an electronic circuit is described comprising a processing circuit configured to perform a data processing including a plurality of successive operations, wherein in at least some of the plurality of operations, a predetermined input value is processed; a check value memory; a controller configured to check, for each operation of the data processing performed by the processing circuit, whether the predetermined input value is processed in the operation, and, if the predetermined input value is processed in the operation, combine the predetermined input value to the content of the check value memory and a detector configured to check, when the processing is complete, whether the content of the check value memory is equal to a predetermined value.
Abstract:
A method is proposed for copying a source array into a target array, wherein both the source array and the target array have at least two elements, wherein each element has a value, in which the elements of the source array are copied into the target array in the sequence of a random permutation, wherein, after a step of copying an element of the source array into the target array, the source array, the target array or the source array and the target array are rotated. A device is also indicated accordingly.