Abstract:
Embodiments disclosed herein relate generally to techniques for mitigating blockages associated with satellite systems. More specifically, techniques disclosed herein, describe solutions for minimizing service interruption during satellite handover. One or more blockages associated with one or more user terminals that connect to a satellite system may be determined by various means. Utilizing those blockages, handover times for the one or more user terminals may be determined such that service interrupts may be minimized.
Abstract:
Embodiments disclosed herein relate generally to techniques for mitigating blockages associated with satellite systems. More specifically, techniques disclosed herein, describe solutions for minimizing service interruption during satellite handover. One or more blockages associated with one or more user terminals that connect to a satellite system may be determined by various means. Utilizing those blockages, handover times for the one or more user terminals may be determined such that service interrupts may be minimized.
Abstract:
Half tone offset may be utilized to mitigate signal distortion caused by DC bias within OFDM-based systems. In addition a cyclic prefix may be utilized within an OFDM-based system to mitigate inter-symbol-interference. Presented herein are techniques and methods to efficiently apply a cyclic prefix to an OFDM symbol with half tone offset for low power systems.
Abstract:
A communications terminal comprises data interface, a transport selection processor and a plurality of communications modems. The data interface receives input data from application sessions for transmission over a data communications network. Each of the application sessions imposes respective transmission requirements for transmission of the data over the data communications network. Each of the communications modems transmits the input data over the data communications network via a respective transmission platform, wherein each transmission platform exhibits respective transmission characteristics based on a transmission technology of the transmission platform. The modems are configured to transmit the input data simultaneously. For each of the application sessions, the transport selection processor selects a one of the modems, for transmission of the input data of the respective application session over the data communications network, based on the respective transmission requirements of the application session and the transmission characteristics of the respective transport platform.
Abstract:
Approaches for efficient, dynamic and continuous handover processes, which encompass selection of an optimal path (consisting of a satellite, a satellite beam and carrier frequency set) over which a mobile user terminal (UT) communicates with the radio access network in a mobile satellite communications system, are provided. A set of path factors are determined regarding each of a plurality of communications paths for the UT. A path selection metric (PSM) for each communications path is determined, wherein the PSM for each communications path is determined via a weighted calculation based on the respective set of path factors for the communications path. A decision is made as to whether to perform a handover of the UT from a first of the communications paths to a second of the communications paths, wherein the determination is based on an evaluation performed based at least in part on the PSM.
Abstract:
A system and method for communicating with an Internet Of Things (IoT) device via a satellite link. The method includes assigning a transmission mode to a physical channel, where the physical channel supports multiple timeslot durations and the transmission mode is selected from a single user (SU) or a multi-user (MU); selecting a timeslot duration from the multiple durations for a payload; obtaining, when the transmission mode is SU, a timeslot grant for use of the physical channel for the timeslot duration; and transmitting a burst including the payload, where the burst is transmitted synchronized with the timeslot grant when the transmission mode is SU and the burst is transmitted without synchronization when the transmission mode is MU.
Abstract:
Techniques described herein provide phase and amplitude calibration of phased array antennas. In an N-by-M phased array having N*M channels, embodiments use aggregated measurements over multiple concurrently active channels to improve signal-to-leakage performance, while also using sequences of exclusion groups to yield an individualized calibration value for each channel (i.e., N*M individualized calibration values). For example, a J×K channel group of the array is selected in each of a sequence of measurement frames based on a calibration schema. Over J*K measurement sub-frames, a set of J*K aggregate measurements is obtained, each with different subsets of the channel group activated and excluded from the measurement. The aggregate calibration measurements can be used to compute J*K individualized calibration values, each for a channel of the channel group. In some implementations, each calibration value is computed as a complex value including both amplitude and phase calibrations information.
Abstract:
A method and system for sharing frequency spectrum with multiple networks includes selecting a first geographical coverage area served by a first base station associated with a first network. The first base station is configured to utilize a predetermined frequency spectrum. A second base station, associated with a different network, that is operating within the first geographical coverage area is identified. Frequency resources from the predetermined are subsequently allocated to the second base station.
Abstract:
Methods, systems, and apparatus, including computer-readable media, for location management for satellite systems. In some implementations, a controller of a satellite network system receives location data from a user terminal and registers the user terminal in a mobility area with a core network. The controller updates a mapping between satellite beams and mobility areas as the satellite beams move along the ground with respect to the mobility areas, then uses the updated mapping to communicate with the user terminal using an appropriate satellite beam. In some implementations, a controller of a satellite network system determines a mapping of satellite beams to mobility areas, and broadcasts, for each of multiple satellite beams, a message indicating (i) a set of mobility areas that are at least partially covered by the satellite beam and (ii) an indication of boundaries of the mobility areas in the set of mobility areas.
Abstract:
Disclosed methods of terrestrial station monitoring of downlink signal quality include receiving a sequence of samples of reference symbol slots of a downlink burst, and estimating a time offset between a local clock and a timing of a symbol pattern carried by the reference symbol slots, using a local copy of the reference symbol pattern. A corresponding time correction is applied to the sequence of samples to form time corrected samples of symbols carried by the reference symbol slots. A frequency offset between the time corrected samples of the symbols carried by the reference symbol slots and a local clock is estimated. A corresponding frequency compensation is applied to the time corrected samples, forming time/frequency compensated samples of the symbols carried by the reference symbol slots. A signal to noise plus interference ratio (SNIR) estimation data, and corresponding estimate of signal path, is generated, based on moments of the time/frequency compensated samples.