Abstract:
Described is a system and method for receiving a data stream of multi-dimensional items, collecting a sample of the data stream having a predetermined number of items and dividing the sample into a plurality of subsamples, each subsample corresponding to a single dimension of each of the predetermined number of items. A query is then executed on a particular item in at least two of the subsamples to generate data for the corresponding subsample. This data is combined into a single value.
Abstract:
Described is a system and method for receiving a signal for transmission and encoding the signal into a plurality of linear projections representing the signal. The encoding includes defining a transform matrix. The transform matrix being defined by processing the signal using a macroseparation matrix, processing the signal using a microseparation matrix and processing the signal using an estimation vector.
Abstract:
A method including receiving a plurality of elements of a data stream, storing a multi-dimensional data structure in a memory, said multi-dimensional data structure storing the plurality of elements as a hierarchy of nodes, each node having a frequency count corresponding to the number of elements stored therein, comparing the frequency count of each node to a threshold value based on a total number of the elements stored in the nodes and identifying each node for which the frequency count is at least as great as the threshold value as a hierarchical heavy hitter (HHH) node and propagating the frequency count of each non-HHH nodes to its corresponding parent nodes.
Abstract:
A method including receiving a plurality of elements of a data stream, storing a multi-dimensional data structure in a memory, said multi-dimensional data structure storing the plurality of elements as a hierarchy of nodes, each node having a frequency count corresponding to the number of elements stored therein, comparing the frequency count of each node to a threshold value based on a total number of the elements stored in the nodes and identifying each node for which the frequency count is at least as great as the threshold value as a hierarchical heavy hitter (HHH) node and propagating the frequency count of each non-HHH nodes to its corresponding parent nodes.
Abstract:
A method, apparatus, and computer readable medium for processing a data stream is described. In one example, a set of elements of a data stream are received. The set of elements are stored in a memory as a hierarchy of nodes. Each of the nodes includes frequency data associated with either an element in the set of elements or a prefix of an element in the set of elements. A set of hierarchical heavy hitters is then identified among the nodes in the hierarchy. The frequency data of each of the hierarchical heavy hitter nodes, after discounting any portion thereof attributed to a descendent hierarchical heavy hitter node in said set of hierarchical heavy hitter nodes, being greater than or equal to a fraction of the number of elements in the set of elements.
Abstract:
Described is a system and method for receiving a signal for transmission and encoding the signal into a plurality of linear projections representing the signal. The encoding includes defining a transform matrix. The transform matrix being defined by processing the signal using a macroseparation matrix, processing the signal using a microseparation matrix and processing the signal using an estimation vector.
Abstract:
The invention comprises a method and apparatus for determining a rank of a query value. Specifically, the method comprises receiving a rank query request, determining, for each of the at least one remote monitor, a predicted lower-bound rank value and upper-bound rank value, wherein the predicted lower-bound rank value and upper-bound rank value are determined according to at least one respective prediction model used by each of the at least one remote monitor to compute the at least one local quantile summary, computing a predicted average rank value for each of the at least one remote monitor using the at least one predicted lower-bound rank value and the at least one predicted upper-bound rank value associated with the respective at least one remote monitor, and computing the rank of the query value using the at least one predicted average rank value associated with the respective at least one remote monitor.
Abstract:
A method and apparatus for computing biased or targeted quantiles are disclosed. For example, the present invention reads a plurality of items from a data stream and inserts each of the plurality of items that was read from the data stream into a data structure. Periodically, the data structure is compressed to reduce the number of stored items in the data structure. In turn, the compressed data structure can be used to output a biased or targeted quantile.
Abstract:
Described is a system and method for receiving a data stream of multi-dimensional items, collecting a sample of the data stream having a predetermined number of items and dividing the sample into a plurality of subsamples, each subsample corresponding to a single dimension of each of the predetermined number of items. A query is then executed on a particular item in at least two of the subsamples to generate data for the corresponding subsample. This data is combined into a single value.
Abstract:
Described is a system and method for receiving a data stream of multi-dimensional items, collecting a sample of the data stream having a predetermined number of items and dividing the sample into a plurality of subsamples, each subsample corresponding to a single dimension of each of the predetermined number of items. A query is then executed on a particular item in at least two of the subsamples to generate data for the corresponding subsample. This data is combined into a single value.