Abstract:
According to an embodiment of the present invention, a spin device includes an intermediate semiconductor region arranged between a first terminal and a second terminal, wherein the first terminal is adapted to provide a current having a first degree of spin polarization to the intermediate semiconductor region, and wherein the second terminal is adapted to output the current having a second degree of spin polarization. The spin device further includes a spin selective scattering structure abutting the intermediate semiconductor region, the spin selective scattering structure being adapted such that the first degree of spin polarization is altered to be the second degree, wherein the spin selective scattering structure comprises a control electrode being electrically insulated from the intermediate semiconductor region, and wherein the control electrode is adapted to apply an electrical field perpendicular to a direction of the current through the intermediate semiconductor region to control a magnitude of the current.
Abstract:
According to an embodiment of the present invention, a spin device includes an intermediate semiconductor region arranged between a first terminal and a second terminal, wherein the first terminal is adapted to provide a current having a first degree of spin polarization to the intermediate semiconductor region, and wherein the second terminal is adapted to output the current having a second degree of spin polarization. The spin device further includes a spin selective scattering structure abutting the intermediate semiconductor region, the spin selective scattering structure being adapted such that the first degree of spin polarization is altered to be the second degree, wherein the spin selective scattering structure comprises a control electrode being electrically insulated from the intermediate semiconductor region, and wherein the control electrode is adapted to apply an electrical field perpendicular to a direction of the current through the intermediate semiconductor region to control a magnitude of the current.
Abstract:
According to various embodiments, a method for processing a semiconductor wafer or die is provided including supplying particles to a plasma such that the particles are activated by the plasma and spraying the activated particles on the semiconductor wafer or die to generate a particle layer on the semiconductor wafer or die.
Abstract:
According to various embodiments, a method for processing a semiconductor wafer or die is provided including supplying particles to a plasma such that the particles are activated by the plasma and spraying the activated particles on the semiconductor wafer or die to generate a particle layer on the semiconductor wafer or die.
Abstract:
A method for fabricating a device includes providing a substrate including at least one contact and applying a dielectric layer over the substrate. The method includes applying a first seed layer over the dielectric layer, applying an inert layer over the seed layer, and structuring the inert layer, the first seed layer, and the dielectric layer to expose at least a portion of the contact. The method includes applying a second seed layer over exposed portions of the structured dielectric layer and the contact such that the second seed layer makes electrical contact with the structured first seed layer. The method includes electroplating a metal on the second seed layer.
Abstract:
A conductive structure in an integrated circuit (12), and a method of forming the structure, is provided that includes a polysilicon layer (30), a thin layer containing titanium over the polysilicon, a tungsten nitride layer (34) over the titanium-containing layer and a tungsten layer over the tungsten nitride layer. The structure also includes a silicon nitride interfacial region (38) between the polysilicon layer and the titanium-containing layer. The structure withstands high-temperature processing without substantial formation of metal silicides in the polysilicon layer (30) and the tungsten layer (32), and provides low interface resistance between the tungsten layer and the polysilicon layer.
Abstract:
A method of forming a semiconductor device includes providing a semiconductor device including a conductor formed thereon. A dielectric layer is formed over the conductor and a recess is formed in the dielectric layer by removing a portion of the dielectric layer to expose at least a portion of the conductor. A first layer of aluminum is deposited over the top surface of the dielectric, along the sidewalls of the dielectric layer and over the exposed portion of the conductor without altering the temperature of the semiconductor device. A second layer of aluminum is deposited over the first layer of aluminum at a temperature greater than about 300° C. A third layer of aluminum is deposited over the second layer of aluminum so as to completely fill the recess in the dielectric layer. The third layer of aluminum is slow deposited at a temperature greater than about 300° C.
Abstract:
Disclosed is a method of ball grid array packaging, comprising the steps of providing a semiconductor die having a metal conductors thereon, covering said metal conductors with an insulative layer, etching through said insulative layer so as to provide one or more openings to said metal conductors, depositing a compliant material layer, etching through said compliant material layer so as to provide one or more openings to said metal conductors, depositing a substantially homogenous conductive layer, patterning said conductive layer so as to bring at least one of said metal conductors in electrical contact with one or more pads, each said pad comprising a portion of said conductive layer disposed upon said compliant material, and providing solder balls disposed upon said pads. Also disclosed is the apparatus made from the method.
Abstract:
A semiconductor component has integrated a coreless transformer with a first connection contact, a second connection contact, an electrically conductive spiral first coil, an electrically conductive first ring, and an electrically conductive second ring. The electrically conductive spiral first coil is electrically connected between the first connection contact and the second connection contact. The electrically conductive first ring surrounds the first coil and one or both of the first connection contact and the second connection contact. The electrically conductive second ring is arranged between the first coil and the first ring, electrically connected to the first coil, and surrounds the first coil and one or both of the first connection contact and the second connection contact.
Abstract:
An integrated circuit includes a base element and a copper element over the base element, the copper element having a thickness of at least 5 μm and a ratio of average grain size to thickness of less than 0.7.