Abstract:
A method of fabricating a semiconductor uses chemical vapor deposition, or plasma-enhanced chemical vapor deposition, to deposit an amorphous silicon film on an exposed surface of a substrate, such as ASIC wafer. The amorphous silicon film is doped with nitrogen to reduce the conductivity of the film and/or to augment the breakdown voltage of the film. Nitrogen gas, N2, is activated or ionized in a reactor before it is deposited on the substrate.
Abstract translation:制造半导体的方法使用化学气相沉积或等离子体增强化学气相沉积法将非晶硅膜沉积在诸如ASIC晶片的衬底的暴露表面上。 非晶硅膜掺杂氮气以降低膜的导电性和/或增加膜的击穿电压。 在将反应器沉积在基材上之前,将氮气N 2 N 2在反应器中活化或离子化。
Abstract:
A deposition system includes a vacuum reaction chamber with a substrate holder positioned in it. The substrate holder is for carrying a substrate therein. A sputtering apparatus is also positioned in the vacuum reaction chamber. The sputtering apparatus is configured to direct sputtered material towards the substrate to form a sputtered material region thereon. A plasma enhanced chemical vapor deposition (PECVD) apparatus is positioned in the vacuum reaction chamber. The PECVD apparatus is configured to deposit a PECVD material region thereon the substrate. The first PECVD apparatus includes a first PECVD electrode movable from a first position towards the substrate and a second position away from the substrate.
Abstract:
A method and system for delivering iodine gas is presented. The pure iodine gas flow can be at a controlled, known flow rate, and furthermore be held at a positive pressure in relation to a process chamber. In an exemplary embodiment, pure iodine gas is transported without the use of an inert carrier gas. This is facilitated in part by maintaining the iodine gas chamber at a higher pressure than the processing chamber. In one exemplary embodiment, an iodine vessel receives solid iodine supplied by an iodine fill source and is heated to produce pure iodine gas. In addition, a control system monitors and controls the operating conditions in the iodine vessel and maintains a positive pressure in the iodine vessel. The iodine delivery system may include a valve system configured to control the flow of iodine gas through the iodine delivery system and into a process chamber.
Abstract:
The present application discloses a method and system of depositing a lead selenide film onto another material. The lead selenide film may used in a photoconductive application or a photovoltaic application. Furthermore, the applications may be responsive to infrared radiation at ambient temperature. In one embodiment, a method includes sputtering the lead selenide film, performing a sensitization process, and applying a passivation film. In one exemplary embodiment, a p-n junction is formed by directly adhering a lead selenide film to a silicon substrate.
Abstract:
A method and system for delivering iodine gas is presented. The pure iodine gas flow can be at a controlled, known flow rate, and furthermore be held at a positive pressure in relation to a process chamber. In an exemplary embodiment, pure iodine gas is transported without the use of an inert carrier gas. This is facilitated in part by maintaining the iodine gas chamber at a higher pressure than the processing chamber.In one exemplary embodiment, an iodine vessel receives solid iodine supplied by an iodine fill source and is heated to produce pure iodine gas. In addition, a control system monitors and controls the operating conditions in the iodine vessel and maintains a positive pressure in the iodine vessel. The iodine delivery system may include a valve system configured to control the flow of iodine gas through the iodine delivery system and into a process chamber.
Abstract:
A method of fabricating a semiconductor uses chemical vapor deposition, or plasma-enhanced chemical vapor deposition, to deposit an amorphous silicon film on an exposed surface of a substrate, such as ASIC wafer. The amorphous silicon film is doped with nitrogen to reduce the conductivity of the film and/or to augment the breakdown voltage of the film. Nitrogen gas, N2, is activated or ionized in a reactor before it is deposited on the substrate.
Abstract:
The present application discloses a method and system of depositing a lead selenide film onto another material. The lead selenide film may used in a photoconductive application or a photovoltaic application. Furthermore, the applications may be responsive to infrared radiation at ambient temperature. In one embodiment, a method includes sputtering the lead selenide film, performing a sensitization process, and applying a passivation film. In one exemplary embodiment, a p-n junction is formed by directly adhering a lead selenide film to a silicon substrate.
Abstract:
A method and system for delivering iodine gas is presented. The pure iodine gas flow can be at a controlled, known flow rate, and furthermore be held at a positive pressure in relation to a process chamber. In an exemplary embodiment, pure iodine gas is transported without the use of an inert carrier gas. This is facilitated in part by maintaining the iodine gas chamber at a higher pressure than the processing chamber.In one exemplary embodiment, an iodine vessel receives solid iodine supplied by an iodine fill source and is heated to produce pure iodine gas. In addition, a control system monitors and controls the operating conditions in the iodine vessel and maintains a positive pressure in the iodine vessel. The iodine delivery system may include a valve system configured to control the flow of iodine gas through the iodine delivery system and into a process chamber.
Abstract:
The present application discloses a method and system of depositing a lead selenide film onto another material. The lead selenide film may used in a photoconductive application or a photovoltaic application. Furthermore, the applications may be responsive to infrared radiation at ambient temperature. In one embodiment, a method includes sputtering the lead selenide film, performing a sensitization process, and applying a passivation film. In one exemplary embodiment, a p-n junction is formed by directly adhering a lead selenide film to a silicon substrate.
Abstract:
An implantable logic circuit configured to receive analog bioelectric signals from one or more implanted electrodes, perform amplification, A/D conversion of the received analog bioelectric signals, signal sampling, and to communicate the signals to a remote processing system over a wireless communications link. Power for the implantable logic circuit is derived from an external source over a wireless link.