Abstract:
A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0≦x≦1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm−3 and carbon having a concentration greater than 5×1017 cm−3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0≦y≦1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
Abstract:
A nitrogen-containing semiconductor device including a first type doped semiconductor layer, a multiple quantum well layer and a second type doped semiconductor layer is provided. The multiple quantum well layer includes barrier layers and well layers, and the well layers and the barrier layers are arranged alternately. The multiple quantum well layer is located between the first type doped semiconductor layer and the second type doped semiconductor layer, and one of the well layers of the multiple quantum well layer is connected to the second type doped semiconductor layer.
Abstract:
A nitrogen-containing semiconductor device including a first type doped semiconductor layer, a multiple quantum well layer and a second type doped semiconductor layer is provided. The multiple quantum well layer includes barrier layers and well layers, and the well layers and the barrier layers are arranged alternately. The multiple quantum well layer is located between the first type doped semiconductor layer and the second type doped semiconductor layer, and one of the well layers of the multiple quantum well layer is connected to the second type doped semiconductor layer.
Abstract:
A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0≤x≤1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm−3 and carbon having a concentration greater than 5×1017 cm−3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0≤y≤1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
Abstract:
A multiple quantum well structure includes a plurality of well-barrier sets arranged along a direction. Each of the well-barrier sets includes a barrier layer, at least one intermediate level layer, and a well layer. A bandgap of the barrier layer is greater than an average bandgap of the intermediate level layer, and the average bandgap of the intermediate level layer is greater than a bandgap of the well layer. The barrier layers, the intermediate level layers, and the well layers of the well-barrier sets are stacked by turns. Thicknesses of at least parts of the well layers in the direction gradually decrease along the direction, and thicknesses of at least parts of the intermediate level layers in the direction gradually increase along the direction. A method for manufacturing a multiple quantum well structure is also provided.
Abstract:
A multiple quantum well structure includes a plurality of well-barrier sets arranged along a direction. Each of the well-barrier sets includes a barrier layer, at least one intermediate level layer, and a well layer. A bandgap of the barrier layer is greater than an average bandgap of the intermediate level layer, and the average bandgap of the intermediate level layer is greater than a bandgap of the well layer. The barrier layers, the intermediate level layers, and the well layers of the well-barrier sets are stacked by turns. Thicknesses of at least parts of the well layers in the direction gradually decrease along the direction, and thicknesses of at least parts of the intermediate level layers in the direction gradually increase along the direction. A method for manufacturing a multiple quantum well structure is also provided.