Abstract:
An apparatus comprises: a processor configured to: select a first channel from among a plurality of channels in a network, and generate a first message assigning a first grant corresponding to the first channel; a transmitter coupled to the processor and configured to transmit the first message; and a receiver coupled to the processor and configured to receive a second message on the first channel and in response to the first message. A method comprises: selecting a first channel from among a plurality of channels in a network; generating a first message assigning a first grant corresponding to the first channel; transmitting the first message; and receiving a second message on the first channel in response to the first message.
Abstract:
An optical line terminal (OLT) channel termination (CT) comprises a receiver configured to receive an upstream message which comprises a correlation tag from an optical network unit (ONU), wherein the correlation tag represents a unique number, a processor coupled to the receiver and configured to process the upstream message, and generate a downstream message based on the upstream message, wherein the downstream message comprises the correlation tag, and a transmitter coupled to the processor and configured to transmit the downstream message to the ONU.
Abstract:
An apparatus includes a processor configured to determine a set of first lanes associated with a PON, select a subset of second lanes from the set, and perform lane bonding by bonding the subset to an ONU. A transmitter coupled to the processor is configured to transmit a lane bonding assignment to the ONU. An ONU includes a plurality of receivers configured to receive a first message comprising an announcement indicating an OLT lane capability. A processor coupled to the receivers is configured to process the first message and generate a second message in response to the first message, wherein the second message comprises a report indicating an ONU lane capability and prompting lane bonding in a PON. A plurality of transmitters coupled to the processor is configured to transmit the second message to the OLT.
Abstract:
An apparatus includes a processor configured to determine a set of first lanes associated with a PON, select a subset of second lanes from the set, and perform lane bonding by bonding the subset to an ONU. A transmitter coupled to the processor is configured to transmit a lane bonding assignment to the ONU. An ONU includes a plurality of receivers configured to receive a first message comprising an announcement indicating an OLT lane capability. A processor coupled to the receivers is configured to process the first message and generate a second message in response to the first message, wherein the second message comprises a report indicating an ONU lane capability and prompting lane bonding in a PON. A plurality of transmitters coupled to the processor is configured to transmit the second message to the OLT.
Abstract:
A passive optical network (PON) includes a first optical line terminal (OLT), a second OLT, and an optical network unit (ONU). The first OLT sends an equalization delay change message to the ONU, wherein the equalization delay change message includes an equalization delay, an upstream channel ID and a downstream channel ID corresponding to the equalization delay. The ONU receives the equalization delay change message. When the ONU tunes from the first OLT to the second OLT, the ONU obtains the equalization delay for upstream transmission according to the upstream channel ID and the downstream channel ID.
Abstract:
An apparatus includes a processor configured to determine a set of first lanes associated with a PON, select a subset of second lanes from the set, and perform lane bonding by bonding the subset to an ONU. A transmitter coupled to the processor is configured to transmit a lane bonding assignment to the ONU. An ONU includes a plurality of receivers configured to receive a first message comprising an announcement indicating an OLT lane capability. A processor coupled to the receivers is configured to process the first message and generate a second message in response to the first message, wherein the second message comprises a report indicating an ONU lane capability and prompting lane bonding in a PON. A plurality of transmitters coupled to the processor is configured to transmit the second message to the OLT.
Abstract:
A passive optical network (PON) includes a first optical line terminal (OLT), a second OLT, and an optical network unit (ONU). The first OLT sends an equalization delay change message to the ONU, wherein the equalization delay change message includes an equalization delay, an upstream channel ID and a downstream channel ID corresponding to the equalization delay. The ONU receives the equalization delay change message. When the ONU tunes from the first OLT to the second OLT, the ONU obtains the equalization delay for upstream transmission according to the upstream channel ID and the downstream channel ID.
Abstract:
An optical line terminal (OLT) channel termination (CT) comprises a receiver configured to receive an upstream message which comprises a correlation tag from an optical network unit (ONU), wherein the correlation tag represents a unique number, a processor coupled to the receiver and configured to process the upstream message, and generate a downstream message based on the upstream message, wherein the downstream message comprises the correlation tag, and a transmitter coupled to the processor and configured to transmit the downstream message to the ONU.
Abstract:
An OLT comprises: a memory; a processor coupled to the memory and configured to: determine each of a plurality of channels associated with an ONU, select a first channel from among the channels, and generate a first message comprising at least one field instructing enablement or disablement of the first channel; and a transmitter coupled to the processor and configured to transmit the first message to the ONU. A method implemented in an OLT, the method comprises: determining each of a plurality of channels associated with an ONU; selecting a first channel from among the channels; generating a first message comprising at least one field instructing enablement or disablement of the first channel; and transmitting the first message to the ONU.
Abstract:
An OLT comprises: a memory; a processor coupled to the memory and configured to: determine each of a plurality of channels associated with an ONU, select a first channel from among the channels, and generate a first message comprising at least one field instructing enablement or disablement of the first channel; and a transmitter coupled to the processor and configured to transmit the first message to the ONU. A method implemented in an OLT, the method comprises: determining each of a plurality of channels associated with an ONU; selecting a first channel from among the channels; generating a first message comprising at least one field instructing enablement or disablement of the first channel; and transmitting the first message to the ONU.