Abstract:
Disclosed herein are various embodiments that include a method and a passive optical network (PON) for supporting a mobile network. In various embodiments, a baseband unit (BBU) is configured to measure an optical path delay from each remote radio unit (RRU) of a plurality of RRUs to the BBU during an initialization phase. The BBU synchronizes all the RRUs in the mobile system by adjusting the timing of each path based on the optical path delay between each RRU and the BBU. The BBU determines a mapping rule that maps each resource block assigned to each RRU of the plurality of RRUs to a different PON transport block. The BBU transmits the mapping rule to each RRU of the plurality of RRUs. In certain embodiments, the mapping rule may be recalculated dynamically after the initialization phase.
Abstract:
A transceiver comprises: a sampling phase optimization stage comprising: a first interpolator; a first equalizer coupled to the first interpolator; a first optimizer coupled to the first equalizer; and an output; and an equalization stage coupled to the output and comprising: a buffer; a second interpolator coupled to the buffer; and a second equalizer coupled to the second interpolator. A method comprising: receiving an optical burst signal; determining an optimum sampling phase based on a portion of a digital signal representing the optical burst signal; and equalizing all of the digital signal using the optimum sampling phase.
Abstract:
A method including receiving, via a frontend of a communication device from a communication link, a cascaded waveform modulation with embedded control signal (CWM-CS); performing time-domain demultiplexing on the CWM-CS to obtain a first waveform modulation signal (W1), a second waveform modulation signal (W2), and a control signal (CS); training a channel equalizer based on the control signal; performing channel equalization on the first waveform modulation signal, the second waveform modulation signal, and the control signal CS; performing time-domain de-multiplexing on the first waveform modulation signal W1, the second waveform modulation signal W2, and the control signal CS; applying a rounding function to the first waveform modulation signal W1; generating a recovered signal (S), by summing the first waveform modulation signal W1 and the second waveform modulation signal W2; recovering data from the recovered signal S; and recovering control information by demodulating the control signal CS.
Abstract:
An ONU comprises a receiver configured to receive a continuous-mode TDMA downstream signal from an OLT; a PD coupled to the receiver and configured to convert the continuous-mode TDMA downstream signal to an electrical signal or an RF signal; an ADC coupled to the PD and configured to convert the electrical signal or the RF signal to a digital signal; and a burst-mode data recovery stage coupled to the ADC and configured to perform data recovery on a segment of the digital signal corresponding to the ONU, the burst-mode data recovery stage comprises a synchronization stage configured to perform synchronization on the segment.
Abstract:
Disclosed herein are various embodiments that include a method and a passive optical network (PON) for supporting a mobile network. In various embodiments, a baseband unit (BBU) is configured to measure an optical path delay from each remote radio unit (RRU) of a plurality of RRUs to the BBU during an initialization phase. The BBU synchronizes all the RRUs in the mobile system by adjusting the timing of each path based on the optical path delay between each RRU and the BBU. The BBU determines a mapping rule that maps each resource block assigned to each RRU of the plurality of RRUs to a different PON transport block. The BBU transmits the mapping rule to each RRU of the plurality of RRUs. In certain embodiments, the mapping rule may be recalculated dynamically after the initialization phase.
Abstract:
An apparatus comprising a frontend configured to convert an optical IM signal associated with a remote optical transmitter into a plurality of analog electrical signals, determine a plurality of DC offsets for the analog electrical signals, remove the DC offsets from the analog electrical signals to produce a plurality of DC-free analog signals, and convert the DC-free analog signals into a plurality of DC-free digital signals, and a DSP unit coupled to the frontend and configured to perform fiber dispersion compensation on the DC-free digital signals according to a dispersion value associated with the remote optical transmitter to produce a plurality of DC-free compensated digital signals, and add the DC offsets to the compensated digital signals to produce a plurality of DC-restored compensated digital signals.
Abstract:
A method implemented by a network device in a wireless system is provided. The method includes obtaining a plurality of electronic signals and selecting a first group of signals and a second group of signals from the plurality of electronic signals, generating phase conjugated copies of signals in the first group of signals, and aggregating the phase conjugated copies and a second group of signals into sub-bands in a frequency domain via frequency-domain multiplexing (FDM), wherein the phase conjugated copies are spectrally inverted in the frequency domain. The method may include converting the aggregated electronic signal to an aggregated optical signal, and transmitting the aggregated optical signal over a fiber link.
Abstract:
An apparatus comprises a DAC configured to convert a digital electrical signal to an analog electrical signal and a laser coupled to the DAC. The laser is configured to generate an optical signal using the analog electrical signal for modulation, the optical signal is a band-multiplexed optical signal comprising frequency bands, the frequency bands comprise a lowest-frequency band, and the lowest-frequency band comprises a baseband IM signal. The laser is configured to transmit the optical signal. A PON comprises an OLT configured to transmit a downstream optical signal, the downstream optical signal is a band-multiplexed optical signal comprising a first band and a second band. The PON includes a first ONU configured to receive the downstream optical signal and equalize only the first band; and a second ONU configured to receive the downstream optical signal and equalize the first band and the second band.
Abstract:
An apparatus comprises: a CDR sub-system comprising: an FFE; a decision component coupled to the FFE; a subtractor coupled to the FFE and the decision component; and a tap weight updater coupled to the subtractor and the FFE; and a PR-MLSE component coupled to the CDR sub-system. A method comprises: converting an optical signal with a first modulation format to an analog electrical signal; converting the analog electrical signal to a first digital signal; equalizing the first digital signal into a second digital signal with a second modulation format, wherein the second modulation format has more levels than the first modulation format; and performing CDR on the second digital signal.
Abstract:
A transceiver comprises: a sampling phase optimization stage comprising: a first interpolator; a first equalizer coupled to the first interpolator; a first optimizer coupled to the first equalizer; and an output; and an equalization stage coupled to the output and comprising: a buffer; a second interpolator coupled to the buffer; and a second equalizer coupled to the second interpolator. A method comprising: receiving an optical burst signal; determining an optimum sampling phase based on a portion of a digital signal representing the optical burst signal; and equalizing all of the digital signal using the optimum sampling phase.