Abstract:
A method of making a semiconductor device may include providing a carrier comprising a semiconductor die mounting site. A build-up interconnect structure may be formed over the carrier. A first portion of a conductive interconnect may be formed over the build-up interconnect structure in a periphery of the semiconductor die mounting site. An etch stop layer and a second portion of the conductive interconnect may be formed over the first portion of the conductive interconnect. A semiconductor die may be mounted to the build-up interconnect at the semiconductor die mounting site. The conductive interconnect and the semiconductor die may be encapsulated with a mold compound. A first end of the conductive interconnect on the second portion of the conductive interconnect may be exposed. The carrier may be removed to expose the build-up interconnect structure. The first portion of the conductive interconnect may be etched to expose the etch stop layer.
Abstract:
A method of making a semiconductor device can comprise providing a temporary carrier comprising a semiconductor die mounting site, and forming an insulating layer over the temporary carrier. Conductive pads can be formed within openings in the insulating layer and be positioned both within and without the die mounting area. A backside redistribution layer (RDL) can be formed over the temporary carrier before mounting a semiconductor die at the die mounting site. Conductive interconnects can be formed over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted face up to the insulating layer. The conductive interconnects, backside RDL, and semiconductor die can be encapsulated with a mold compound. A build-up interconnect structure can be formed and connected to the semiconductor die and the conductive interconnects. The temporary carrier can be removed and the conductive pads exposed in a grinding process.
Abstract:
A method of making a semiconductor device can comprise providing a temporary carrier comprising a semiconductor die mounting site, and forming an insulating layer over the temporary carrier. Conductive pads can be formed within openings in the insulating layer and be positioned both within and without the die mounting area. A backside redistribution layer (RDL) can be formed over the temporary carrier before mounting a semiconductor die at the die mounting site. Conductive interconnects can be formed over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted face up to the insulating layer. The conductive interconnects, backside RDL, and semiconductor die can be encapsulated with a mold compound. A build-up interconnect structure can be formed and connected to the semiconductor die and the conductive interconnects. The temporary carrier can be removed and the conductive pads exposed in a grinding process.
Abstract:
A method of making a semiconductor device can include providing a wafer comprising a plurality of semiconductor die, wherein each semiconductor die comprises an active surface and a backside opposite the active surface. A photosensitive layer can be formed over the wafer and on a backside of each of the plurality of semiconductor die within the wafer with a coating machine. An identifying mark can be formed within the photosensitive layer for each of the plurality of semiconductor die with a digital exposure machine and a developer, wherein a thickness of the identifying mark is less than or equal to 50 percent of a thickness of the photosensitive layer. The photosensitive layer can be cured. The wafer can be singulated into a plurality of semiconductor devices.
Abstract:
A method of making a semiconductor device can include providing a temporary carrier with adhesive. A first semiconductor die and a second semiconductor die can be mounted face up to the temporary carrier such that back surfaces of the first semiconductor die and the second semiconductor die are depressed within the adhesive. An embedded die panel can be formed by encapsulating at least four sides surfaces and an active surface of the first semiconductor die, the second semiconductor die, and side surfaces of the conductive interconnects in a single step. The conductive interconnects of the first semiconductor die and the second semiconductor die can be interconnected without a silicon interposer by forming a fine-pitch build-up interconnect structure over the embedded die panel to form at least one molded core unit. The at least one molded core unit can be mounted to an organic multi-layer substrate.
Abstract:
A semiconductor device and method of adaptive patterning for panelized packaging with dynamic via clipping is described. A panel comprising an encapsulating material disposed around a plurality of semiconductor die can be formed. An actual position for each of the plurality of semiconductor die within the panel can be measured. A conductive redistribution layer (RDL) comprising first capture pads aligned with the actual positions of each of the plurality of semiconductor die can be formed. A plurality of second capture pads at least partially disposed over the first capture pads and aligned with a package outline for each of the plurality of semiconductor packages can be formed. A nominal footprint of a plurality of conductive vias can be adjusted to account for a misalignment between each semiconductor die and its corresponding package outline.
Abstract:
A method of making a semiconductor device can include providing a temporary carrier with a semiconductor die mounting site, and forming conductive interconnects over the temporary carrier in a periphery of the semiconductor die mounting site. A semiconductor die can be mounted at the semiconductor die mounting site. The conductive interconnects and semiconductor die can be encapsulated with mold compound. First ends of the conductive interconnects can be exposed. The temporary carrier can be removed to expose second ends of the conductive interconnects opposite the first ends of the conductive interconnects. The conductive interconnects can be etched to recess the second ends of the conductive interconnects with respect to the mold compound. The conductive interconnects can comprise a first portion, a second portion, and an etch stop layer disposed between the first portion and the second portion.
Abstract:
A method of manufacturing a semiconductor chip comprising placing a plurality of die units each having an active front surface and a back surface facing front surface up on an encapsulant layer, encapsulating the plurality of die units on the active surface of the encapsulant layer with an encapsulant covering a front surface and four side surfaces of each of the plurality of die units, and exposing, through the encapsulation on the front surface, conductive interconnects electrically connecting a die bond pad to a redistribution layer.
Abstract:
A semiconductor device and method of making a semiconductor device is described. An embedded die panel comprising a plurality of semiconductor die separated by saw streets is provided. A conductive layer is formed by an electroless plating process, the conductive layer comprising bussing lines disposed in the saw streets and a redistribution layer (RDL) coupled to the semiconductor die and bussing lines. An insulating layer is formed over the conductive layer and embedded die panel, the insulating layer comprising openings disposed over the conductive layer outside a footprint of the semiconductor die. Interconnect structures are formed in the openings in the insulating layer by using the conductive layer as part of an electroplating process. The embedded die panel is singulated through the saw streets after forming the interconnect structures to remove the bussing lines and to from individual fan-out wafer level packages (FOWLPs).
Abstract:
Panelized packaging is described in which a plurality of die units are placed on a dielectric film. The dielectric film is then cured to lock the plurality of die unit in place, which are then encapsulated. The cured dielectric film is then patterned utilizing a mask-less pattering technique.