Abstract:
Various techniques are provided to generate a plurality of reference clock signals using a single reference clock signal generator. In one example, a clock signal generation system includes a reference clock signal generator adapted to provide a reference clock signal. The system also includes a plurality of dividers adapted to divide the reference clock signal using different ratios to provide a plurality of communication port clock signals. The system also includes a plurality of different communication ports adapted to receive the communication port clock signals and adapted to operate in accordance with different communication protocols using the communication port clock signals.
Abstract:
Systems and methods are disclosed for improving digital feed-forward data recovery of high speed data from a received data stream in a data transceiver or receiver where the receiver clock is asynchronous to the transmitter clock used to transmit the received data stream. In one example, the received data stream is oversampled using N evenly-spaced multi-phase clocks. The oversampled data are packed into a data block. Data transition edges of the oversampled data in the data blocks with respect to multi-phase clocks are tracked. The tracked data transition edges are used to determine the length of a decision window and to further divide the oversampled data into groups of bits that are hypothesized to be samples of the same received data symbol. Bit mapping is performed on the decision window to recover the received data symbol. By tracking the movement of data transition edges, the technique enhances data recovery capability.
Abstract:
Various techniques are provided for selectively allocating a buffer adapted to be shared for storage media device data communications and downstream device data communications routed through a hub. For example, in one embodiment, a method includes detecting if one or more downstream devices are connected to one or more downstream device ports of the hub. The method also includes, if any downstream devices are detected: allocating a first portion of the buffer for a storage media device controller, allocating one or more second portions of the buffer for the detected downstream devices, wherein each of the second portions is associated with a corresponding one of the detected downstream devices, and passing the storage media device data communications between a host device and the storage media device controller through the first portion of the buffer and not the second portions of the buffer.
Abstract:
A spark plug for an internal combustion engine includes a spark plug housing. An insulator is concentrically located within the housing and has a distal end extending from an outer surface of the housing. A center electrode extends from a proximal end of the insulator. A ground electrode is secured to the housing and has an electrode tip arranged a distance from the center electrode. A chamber cap fixedly secured to the housing and surrounding both the center and ground electrodes, includes a laminate shell and a plurality of orifices.
Abstract:
Embodiments of the present invention disclose a method and system for populating location-based information on a portable electronic device. According to one embodiment, a request to create a memory record on the portable electronic device is received from a user. Based on the geographic location of the portable electronic device, relevant location information associated with a plurality of reference fields of the memory record are determined and displayed on the portable electronic device.
Abstract:
Various techniques are provided for interfacing external devices with host computer systems. In one example, hard drive parameters may be retrieved from a nonvolatile memory of an external hard drive enclosure device in order to register the external device with a host device while the host device provides a low power level to the external device. Following registration of the external device, the host device may provide a high power level to the external device to operate the registered external device. The hard drive parameters may be stored in the nonvolatile memory by a provider of the external device. In another example, the hard drive parameters may be loaded into the nonvolatile memory by appropriate software running on the host device. In yet another example, the external device may read the hard drive parameters from the hard drive while emulating another external device.
Abstract:
The present disclosure provides electrode structures and integrated electrode structures having one or more conductive materials coextruded with one or more dielectric materials. The disclosed electrode structures can be configured for use as analyte sensors. Also provided, are methods of making and using the electrode structures and integrated electrode structures described herein.
Abstract:
The present application provides redox polymer based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
Abstract:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer on a substrate, and forming a sacrificial layer on the high-k gate dielectric layer. After etching the sacrificial layer, first and second spacers are formed on opposite sides of the sacrificial layer. After removing the sacrificial layer to generate a trench that is positioned between the first and second spacers, a metal layer is formed on the high-k gate dielectric layer.