Abstract:
A device for supporting wireless communication is provided. The device includes a transceiver, an antenna, and a radio frequency (RF) front end system communicatively coupled to the transceiver and the antenna. The RF front end system may include: a RF sampling block coupled to the transceiver and configured to sample signals received from the transceiver and output voltage signals; a RF switching logic coupled to the RF sampling block to receive the voltage signals and configured to switch the front end RF system between a transmitting mode and a receiving mode; a RF transmission gain block coupled to the RF switching logic and configured to increase a transmission power of the signals received from the transceiver; and a RF receiving gain block coupled to the RF switching logic and configured to remove noise signals contained in radio frequency signals received from the antenna.
Abstract:
A device for supporting wireless communication is provided. The device includes a first Bluetooth transceiver for connecting to a Bluetooth device, a second Bluetooth transceiver for connecting to a client device, one or more processors, and a memory for storing instructions executable by the one or more processors. The one or more processors may be configured to scan for one or more available Bluetooth devices via the first Bluetooth transceiver, establish a first communication connection with the Bluetooth device via the first Bluetooth transceiver, establish a second communication connection with the client device via the second Bluetooth transceiver, receive data from the client device via the second communication connection, and forward the data to the Bluetooth device via the first communication connection.
Abstract:
A device for supporting wireless communication is provided. The device includes a transceiver, an antenna, and a radio frequency (RF) front end system communicatively coupled to the transceiver and the antenna. The RF front end system may include: a RF sampling block coupled to the transceiver and configured to sample signals received from the transceiver and output voltage signals; a RF switching logic coupled to the RF sampling block to receive the voltage signals and configured to switch the front end RF system between a transmitting mode and a receiving mode; a RF transmission gain block coupled to the RF switching logic and configured to increase a transmission power of the signals received from the transceiver; and a RF receiving gain block coupled to the RF switching logic and configured to remove noise signals contained in radio frequency signals received from the antenna.
Abstract:
A device for supporting wireless communication is provided. The device includes a transceiver, an antenna, and a radio frequency (RF) front end system communicatively coupled to the transceiver and the antenna. The RF front end system may include: a RF sampling block coupled to the transceiver and configured to sample signals received from the transceiver and output voltage signals; a RF switching logic coupled to the RF sampling block to receive the voltage signals and configured to switch the front end RF system between a transmitting mode and a receiving mode; a RF transmission gain block coupled to the RF switching logic and configured to increase a transmission power of the signals received from the transceiver; and a RF receiving gain block coupled to the RF switching logic and configured to remove noise signals contained in radio frequency signals received from the antenna.
Abstract:
A device for supporting wireless communication is provided. The device includes a first Bluetooth transceiver for communicating with a Bluetooth device, a second Bluetooth transceiver for communicating with a client device, one or more processors, and a memory for storing instructions executable by the one or more processors. The one or more processors may be configured to establish, via the first Bluetooth transceiver, a first communication connection with the Bluetooth device, and transmit, via the second Bluetooth transceiver, a Bluetooth broadcast signal indicating an availability of the Bluetooth device, and establish, via the second Bluetooth transceiver, a second communication connection with the client device. The one or more processors may be further configured to receive, data directing to the Bluetooth device, from the client device via the second communication connection, and forward, the data directing to the Bluetooth device, to the Bluetooth device via the first communication connection.
Abstract:
A device for providing audio data to a plurality of Bluetooth audio devices is provided. The device includes one or more Bluetooth transceivers for communicating with the plurality of Bluetooth audio devices, at least one network interface, one or more processors, and a memory for storing instructions executable by the one or more processors. The one or more processors may be configured to receive the audio data via the at least one network interface, decode the audio data for audio playing, and transmit the decoded audio data to the plurality of Bluetooth audio devices via the one or more Bluetooth transceivers.
Abstract:
A device for supporting wireless communication is provided. The device may comprise a first Bluetooth chip for communicating with a Bluetooth device and a second Bluetooth chip for communicating with a client device. The second Bluetooth chip may be configured to receive advertising data of the Bluetooth device from the first Bluetooth chip and broadcast advertising data including the received advertising data of the Bluetooth device. The first Bluetooth chip and the second Bluetooth chip may be configured to establish communication links between the client device and the second Bluetooth chip, between the second Bluetooth chip and the first Bluetooth chip, and between the first Bluetooth chip and the Bluetooth device.
Abstract:
A device for supporting wireless communication is provided. The device includes a first Bluetooth transceiver for connecting to a Bluetooth device, a second Bluetooth transceiver for connecting to a client device, one or more processors, and a memory for storing instructions executable by the one or more processors. The one or more processors may be configured to scan for one or more available Bluetooth devices via the first Bluetooth transceiver, establish a first communication connection with the Bluetooth device via the first Bluetooth transceiver, establish a second communication connection with the client device via the second Bluetooth transceiver, receive data from the client device via the second communication connection, and forward the data to the Bluetooth device via the first communication connection.
Abstract:
Devices, systems, and methods are disclosed for detecting falls and transmitting notifications. One embodiment includes a wearable device. The wearable device may include a first sensor configured to collect acceleration data, and at least one of a second sensor configured to collect pressure data or a third sensor configured to collect temperature data. The wearable device may also include an antenna and a processor. The wearable device may also include a non-transitory computer-readable storage medium storing instructions that, when executed by the processor, cause the processor to receive the acceleration data and at least one of the pressure data or the temperature data, process the acceleration data and at least one of the pressure data or the temperature data, and control, when the processor determines that a person falls, the antenna to transmit a signal.
Abstract:
A device for supporting wireless communication is provided. The device includes a transceiver, an antenna, and a radio frequency (RF) front end system communicatively coupled to the transceiver and the antenna. The RF front end system may include: a RF sampling block coupled to the transceiver and configured to sample signals received from the transceiver and output voltage signals; a RF switching logic coupled to the RF sampling block to receive the voltage signals and configured to switch the front end RF system between a transmitting mode and a receiving mode; a RF transmission gain block coupled to the RF switching logic and configured to increase a transmission power of the signals received from the transceiver; and a RF receiving gain block coupled to the RF switching logic and configured to remove noise signals contained in radio frequency signals received from the antenna.