Abstract:
This disclosure describes systems, methods, and devices related to an enhanced multiple input multiple output (MIMO) preamble frame. A device may determine a MIMO frame including a first section and a second section. The device may generate an enhanced MIMO frame including at least in part a modified first section and the second section of the MIMO frame. The device may determine a first stream and a second stream associated with at least one antenna of the device. The device may cause to send the enhanced MIMO frame to one or more first devices on the first stream. The device may cause to send the MIMO frame to the one or more first devices on the second stream.
Abstract:
Apparatus, computer readable media, and methods for enhanced beamforming training in a wireless local area network are disclosed. An apparatus of a access point or station is disclosed. The apparatus including processing circuitry where the processing circuitry is configured to encode an EBRP packet comprising a first portion comprising an indication of a first number of transmit antenna training settings (N-TX), and an indication of a second number of receive training subfields per N-TX settings (N-RX), and a second portion comprising a third number of training subfields. The third number may be less than or equal to N-TX times N-RX. The processing circuitry may be configured to cause the first portion of the EBRP packet to be transmitted and cause the second portion to be transmitted, where two or more of the third number of training subfields are to be transmitted simultaneously using different antennas and orthogonal sequences.
Abstract:
Embodiments include systems and methods for allocating time to a plurality of devices in the network of a piconet controller. Embodiments comprise selectively directing a steerable antenna beam of the piconet controller to a plurality of devices in succession during a polling process to receive time allocation requests from one or more of the devices. Subsequent to the polling process, a grant procedure is performed wherein a device is granted permission to transmit in a subsequent time interval. Also during the grant process, one or more devices are instructed to receive from the device granted permission to transmit. The polling process and the grant process occur in the same superframe.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating orientation information. For example, an apparatus may include a controller to receive at a first wireless communication device an orientation feedback from a second wireless communication device, subsequent to establishment of a directional wireless communication link with the second wireless communication device, the orientation feedback including an indication of an estimated orientation of the second wireless communication device, wherein, based on the estimated orientation of the second wireless communication device, the controller is to instruct the first wireless communication device to output a recommendation to change an orientation of the second wireless communication device.
Abstract:
Some demonstrative embodiments include apparatuses, systems and method of disconnecting a wireless communication link. For example, a wireless communication device may include a controller to receive placement-related information indicating a change in one or more placement-related attributes of the wireless communication device, during communication over a wireless communication link, and based on the orientation-related information to disconnect the wireless communication link.
Abstract:
A system and method are provided to facilitate establishing WiGig communications links between WiGig-enabled wireless devices and WiGig PBSS Control Points and Access Points (PCP/AP). The PCP/AP transmits beacons that are intended to assist the wireless devices in locating the PCP/AP. Based on the directional nature of WiGig communications, the beacons are transmitted directionally in a number of sectors in multiple directions simultaneously or in sequence. When devices, such as wireless devices, attempting to connect via a PCP/AP, are positioned very close to the PCP/AP, the devices may be incapable of receiving the transmitted beacons because the low noise amplifier (LNA) located in the individual wireless device receiver may become saturated. The disclosed systems and methods broadcast the beacons at lower power according to different schemes at certain intervals to avoid saturating the LNAs.
Abstract:
Embodiments include systems and methods for allocating time to a plurality of devices in the network of a piconet controller. Embodiments comprise selectively directing a steerable antenna beam of the piconet controller to a plurality of devices in succession during a polling process to receive time allocation requests from one or more of the devices. Subsequent to the polling process, a grant procedure is performed wherein a device is granted permission to transmit in a subsequent time interval. Also during the grant process, one or more devices are instructed to receive from the device granted permission to transmit. The polling process and the grant process occur in the same superframe.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of indicating station-specific information within a wireless communication. For example, a device may include a wireless communication unit to transmit a wireless communication frame to a plurality of stations using a respective plurality of beamforming configurations, wherein the wireless communication unit is to transmit to the stations beamforming configuration information including station-specific information corresponding to the plurality of beamforming configurations, respectively.
Abstract:
An extended range preamble is disclosed, for transmission between extended range 802.11n devices. The extended range preamble consists of a high-throughput signal field, in which a modulation coding scheme rate and payload length are specified by the transmitting device. The extended range preamble also includes an expanded preamble, which is adjacent to the high-throughput signal field, and is not understood by non-extended range devices. The modulation coding scheme rate is specified as either one of the rates supported in non-extended range 802.11 devices or as a reserved modulation coding scheme not understood by the non-extended range devices. In either circumstance, the non-extended range device respects the preamble, and thus does not itself attempt a transmission during processing of the preamble.
Abstract:
Bidirectional iterative beam forming techniques are described. An apparatus may include a wireless device having an antenna control module operative to initiate beam formation operations using an iterative training scheme to form a pair of communications channels for a wireless network, the antenna control module to communicate training signals and feedback information with a peer device via the transceiver and phased antenna array using partially or fully formed high rate channels, and iteratively determine antenna-array weight vectors for a directional transmit beam pattern for the phased antenna array using feedback information from the peer device. Other embodiments are described and claimed.