Abstract:
The invention relates to a stator (1) which may be used within an electric rotating machine, an apparatus for preparing pre-shaped insulators and a method for preparing a pre-shaped insulator. The stator (1) comprises a stator core (10) which has a plurality of axially extending slots (11) arranged in a circumferential direction (C) of the stator core (10) and at least two conductors (20, 21) arranged along a radial direction (R) of the same slot (11). Each conductor (20, 21) is peripherally wrapped by an individual insulator (30) which extends around the outer circumference (22) of the conductor (20, 21), such that in circumferential direction the insulator (30) comprises a one-layer-section (37) and an overlapping section (31) which extend along the complete axial length (29) of the insulator (30).
Abstract:
The invention relates to a stator (100) which may be used within an electric rotating machine, an electric machine, an apparatus for preparing a stator and a method for preparing a stator. The stator (100) comprises a stator core (10) having a plurality of slots (11) arranged in a circumferential direction (C) of the stator core (10). At least a first conductor (12) and at least a second conductor (13) are arranged along a radial direction (R) of one slot (11). Axial end sections (22, 23) of the conductors (12, 13) are electrically connectable or connected and the axial end sections (22, 23) of radially adjacent conductors (12, 13) are distanced from each other. The distance (28) between the proximal end (29) of the axial end section (22) of a first conductor (12) and the stator core (10) is longer than the distance (26) between the distal end (27) of the axial end section (23) of a second conductor (13) and the stator core (10).
Abstract:
An apparatus for forming pre-shaped insulating sheets comprises a first bending station and a second bending station. The first bending station is used for bending a flat sheet of insulating material into a Z-shaped sheet (5). The second bending station is used for bending the Z-shaped sheet into an S-shape. The first and second bending stations comprise pairs of first (13a, 13b) and second bending operators for creating bending movements.
Abstract:
A method and an apparatus are provided for manufacturing a stator with a plurality of hairpin conductors. For inserting the hairpin conductors (15, 15) into the slots (11) of a stator core (12) a stator core template (22) is provided. Hairpin conductors (15) are axially inserted into slots (21) of the stator core template (22) such that the hairpin conductor (15) is arranged at a first position (P1) within said slot (21). The hairpin conductor (15) is then moved within said slot (21) to a different position (P2). A complete nest (20) of hairpin conductors (15) formed within the stator core template (22) is then transferred to the stator core (12).
Abstract:
The method and apparatus comprise the following features: —forming coil members (21) by bending an electric conductor (20) externally coated with an outer insulation (20′); wherein the bending is made at predetermined lengths from a reference position (16′), and wherein each one of the coil members (21), when formed, comprises at least one head portion (21′) and leg portions (21″) extending from said at least one head portion (21′); —feeding the electric conductor (20) to accomplish the bending; —cutting the electric conductor (20) to detach a formed coil member (21) from said electric conductor (20); —inserting the leg portions (21″) of the coil members (21) into slots of the stator, so that parts of said leg portions (21″) extend from one end of the stator and the head portions (21′) extend from an opposite end of the stator; —arranging at least one laser beam (13′a, 13′b) to remove the insulation (20′) from predetermined areas (20a, 20b) of the electric conductor (20); —radiating the surface of the electric conductor (20) with said at least one laser beam (13′a, 13′b) situated at a predetermined position (IP, 2P) with respect to the reference position (16′) along the length of the electric conductor (20) being fed, and at a predetermined stage of the bending of a coil member (20).
Abstract:
An apparatus for winding coils of dynamoelectric machines, wherein the apparatus includes means for inserting leg portions of a coil member in a plurality of slots of at least one core of a dynamoelectric machine, wherein each slot includes an insulation member lining the walls thereof. A passage member is provided with a plurality of passages and a plurality of support areas. Each passage is configured to receive a leg portion of a coil member, and each support area is arranged adjacent a respective passage. The apparatus further includes means to align the passage member with the at least one core to align the passages of the passage member with the slots of the core such that the plurality of passages each receive a respective leg portion of a coil member and corresponding support areas engage an end of a respective insulation member during insertion of the respective leg portions.
Abstract:
A method for terminating and winding coils of a core of a dynamo electric machine. The coils being formed from at least an electric wire and the core having a longitudinal axis. The coils (19) are wound by relatively moving a wire dispenser with respect to a core with relative motions of translation and rotation; at least a stretch of wire extends from the coil; and the stretch of wire is provided with a portion for a termination connection to a termination structure of the core, such as a tang. The method avoids waste cut wire in the apparatus. The core is provided with a groove at an end to receive at least a wire in the path of the wire for the termination of the coils. The apparatus comprises a wire deflector positioned adjacent the end of the core, where the groove is located, in order to intercept and align the wire with the groove. The apparatus can comprise a device for applying torques in two directions on a pulley wheel for feeding wire as a function of the position of the dispenser in the translation and the position of the core in the rotations.
Abstract:
A method for terminating and winding coils of a core of a dynamo electric machine. The coils being formed from at least an electric wire and the core having a longitudinal axis. The coils are wound by relatively moving a wire dispenser with respect to a core with relative motions of translation and rotation; at least a stretch of wire extends from the coil and the stretch of wire is provided with a portion for a termination connection to a termination structure of the core such as a tang. The method avoids waste cut wire in the apparatus. The core is provided with a groove at an end to receive at least a wire in the path of the wire for the termination of the coils. The apparatus comprises a wire deflector positioned adjacent the end of the core, where the groove is located, in order to intercept and align the wire with the groove.
Abstract:
The invention relates to a stator which may be used within an electric rotating machine and a method for manufacturing a stator. The stator (200) comprises a stator core (100) having a plurality of slots (101, 101a, 101b) arranged in circumferential direction (C) of the stator core (100), a plurality of conductors (102, 103) forming a stator winding, wherein at least a radially outer conductor (102) and a radially inner conductor (103) are arranged along a radial direction (R) of each slot (101). At least one pair of a radially outer conductor (102) of a first slot (101a) and a radially inner conductor (103) of a second slot (101b) circumferentially spaced from the first slot (101a) is electrically connected by a connection bridge (1). The connection bridge (1) comprises a first base element (2) and a second base element (3) connected to a respective conductor (102, 103) and a top element (4) being connected to the base elements (2, 3) and preferably arranged in a larger distance from the stator core (100) than the first base element (2) and second base element (3).
Abstract:
A method and an apparatus are provided for manufacturing a stator with a plurality of hairpin conductors. For inserting the hairpin conductors (15, 15) into the slots (11) of a stator core (12) a stator core template (22) is provided. Hairpin conductors (15) are axially inserted into slots (21) of the stator core template (22) such that the hairpin conductor (15) is arranged at a first position (P1) within said slot (21). The hairpin conductor (15) is then moved within said slot (21) to a different position (P2). A complete nest (20) of hairpin conductors (15) formed within the stator core template (22) is then transferred to the stator core (12).