Abstract:
A flip chip light emitting diode includes a semiconductor layer comprising an epitaxial layer an N-semiconductor layer, a light active layer and a P-semiconductor layer arranged from top to bottom in series. A first electrode mounted on the semiconductor layer. A second electrode mounted on the semiconductor layer. A insulating layer mounted on the semiconductor layer. The N-semiconductor layer protrudes away from the epitaxial layer to form a protruding portion. The light active layer and the P-semiconductor layer mounts on the protruding portion in series. The insulating layer mounts between the first electrode and the protruding portion, the light active layer, the P-semiconductor layer and the second electrode. The flip chip light emitting diode also comprises a supporting portion, the supporting portion is mounted on a top surface of the epitaxial layer by a connecting portion. The connecting portion has same or different materials with the supporting portion.
Abstract:
A display apparatus and a fabricating method thereof are provided. The display apparatus includes a substrate, a light emitting diode, a first bump, a first insulating layer and a second insulating layer. The light emitting diode has a first surface and a second surface opposite each other, wherein the first surface faces the substrate. The light emitting diode is bonded to the substrate through the first bump. The first insulating layer is disposed on a periphery of the first bump and the light emitting diode, and contacts the first bump and the first surface. The second insulating layer is disposed on the substrate and surrounds at least a portion of the first insulating layer.
Abstract:
An LED includes a substrate, a first n-type GaN layer, a connecting layer, a second n-type GaN layer, a light emitting layer, and a p-type GaN layer. The first n-type GaN layer, the connecting layer, and the second n-type GaN layer are formed on the substrate in sequence. The connecting layer is etchable by alkaline solution, and a bottom surface of the second n-type GaN layer facing towards the connecting layer has a roughed exposed portion. The GaN on the bottom surface of the second n-type GaN layer is N-face GaN. A top surface of the second n-type GaN layer facing away from the connecting layer includes a first area and a second area. The light emitting layer and the p-type GaN layer are formed on the first area of the top surface of the second n-type GaN layer in sequence.
Abstract:
An LED includes a substrate, a first n-type GaN layer, a connecting layer, a second n-type GaN layer, a light emitting layer, and a p-type GaN layer formed on the substrate in sequence. The connecting layer is etchable by alkaline solution. A bottom surface of the second n-type GaN layer faces towards the connecting layer and has a roughened exposed portion. The GaN on the bottom surface of the second n-type GaN layer has an N-face polarity. A blind hole extends through the p-type GaN layer, the light emitting layer and the second n-type GaN layer to expose the connecting layer. An annular rough portion is formed on the bottom surface of the second n-type GaN layer and surrounds each blind hole.
Abstract:
A method for manufacturing a light emitting diode (LED) chip comprises steps of stacking together a first substrate, a buffer layer, an ultraviolet light (UV) shielding layer, and at least one LED chip in that sequence. An orthogonal projection of each LED chip on the UV shielding layer is located in the scope of the UV shielding layer, and a periphery of the UV shielding layer protrudes from a periphery of the orthogonal projection; mounting a side of each LED chip facing away from the first substrate on the second substrate with an adhesive layer; irradiating UV light from a side of the first substrate facing away from the LED chip, to separate the first substrate from the UV shielding layer; removing the UV light shielding layer, the second substrate, and the adhesive layer from each LED chip.
Abstract:
A light emitting diode include a light emitting chip, a first reflecting layer surrounding the light emitting diode chip, a first encapsulation layer and a second encapsulation layer covering on the light emitting diode chip. The light emitting chip has a light exiting surface, a first electrode and a second electrode. the first electrode and the second electrode are located opposite to the light exiting surface. Further, a second reflecting layer surrounds the periphery of the light emitting chip and also locates between the first encapsulation layer and the second encapsulation layer. A reflectivity of the first reflecting layer is greater than a reflectivity of the first reflecting layer. A bottom surface of the first electrode and the second electrode are exposed from the first reflecting layer.
Abstract:
A method for manufacturing a light emitting diode includes providing an epitaxial wafer having a substrate and an epitaxial layer allocated on the substrate. The epitaxial layer comprises a first semiconductor layer, an active layer, a second semiconductor layer sequentially allocated, and at least one blind hole penetrating the second semiconductor layer, the active layer and inside the first semiconductor layer; then a first electrode is formed on the first semiconductor layer inside the at least one blind hole and a second electrode is formed on the second semiconductor layer; thereafter a first supporting layer is allocated on the first electrode and a second supporting layer is allocated on the second electrode.
Abstract:
A light emitting diode chip comprises a light emitting diode chip core and a coating layer. The coating layer covers side surfaces of the light emitting diode chip core. And a display composed of the light emitting diode chips is also provided.
Abstract:
A light emitting device includes a base and a light emitting diode chip, the light emitting diode chip is formed on a top surface of the base, an outline of a projection of the light emitting diode chip projected on the top surface of the base is positioned in the top surface of the base. The light emitting device further includes a light reflecting portion, the light reflecting portion is formed on the top surface of the base, the light reflecting portion is defined around the light emitting diode chip, a height of the light reflecting portion is less than a height of the light emitting diode chip.
Abstract:
A display apparatus and a fabricating method thereof are provided. The display apparatus includes a substrate, a light emitting diode, a first bump, a first insulating layer and a second insulating layer. The light emitting diode has a first surface and a second surface opposite each other, wherein the first surface faces the substrate. The light emitting diode is bonded to the substrate through the first bump. The first insulating layer is disposed on a periphery of the first bump and the light emitting diode, and contacts the first bump and the first surface. The second insulating layer is disposed on the substrate and surrounds at least a portion of the first insulating layer.