Abstract:
A delamination container includes an engaging protrusion that is provided in an area extending over at least a ground contact portion and a recess and protrudes from either one of an outer layer body and an inner layer body and engages with the other in an undercutting manner. Further, a preform includes an engaging protrusion that is provided in an area extending from at least a boundary between a bottom and a trunk to just before an axial center of the bottom and protrudes from either one of an outer body and an inner body and engages with the other in an undercutting manner.
Abstract:
A container production method by liquid blow molding. The method includes a head space forming step of forming a head space in the upper portion of a container, in which, with the container disposed in a cavity, a bottom panel portion molded into an upward convex shape on a bottom of the container is inverted by pushing it down with a pushing rod and is plastically deformed into a downward convex shape.
Abstract:
A container production method by liquid blow molding. The method includes a head space forming step of forming a head space in the upper portion of a container, in which, with the container disposed in a cavity, a bottom panel portion molded into an upward convex shape on a bottom of the container is inverted by pushing it down with a pushing rod and is plastically deformed into a downward convex shape.
Abstract:
A container production method including a preform setup step of disposing a preform in a blow molding mold and engaging a filling nozzle with a mouth of the preform; a blow molding step of liquid blow molding the preform by supplying a pressurized liquid into the preform; a liquid discharge step of releasing the blow molding mold and pressing a trunk of the container after molding with a pressing portion that is inserted from a clearance between separated mold pieces adjacent to each other to discharge a liquid in the container to the outside of the container by a predetermined amount; and a headspace forming step of forming a headspace in the container by separating the filling nozzle from a mouth of the container.
Abstract:
To solve a problem associated with formation of a transparent window portion in a biaxially stretch blow molded container by a nozzle structure of an injection molding apparatus, provided is a biaxially stretch blow molded container formed with a clearly transparent window portion in longitudinal strip shape by effectively preventing mixture of colored resin to window portion. Injection molding apparatus includes in nozzle portion a longitudinal groove flow path, wherein a transparent B resin flows. By, for example, reducing and increasing, respectively, the width and depth of the longitudinal groove flow path on the downstream side, and engraving slits in an inner mandrel and even in a front end portion of a stopper pin, flowability of the B resin in a horizontal direction is enhanced.
Abstract:
An apparatus for producing a mixed solution, comprising a mixing vessel for preparing an aqueous mixed solution containing a dicarboxylic acid and a Nb compound and a filter for the aqueous mixed solution connected to the mixing vessel via a pipe, the mixing vessel being anticorrosive and equipped with a stirring unit, a heating unit and a cooling unit for the aqueous mixed solution, wherein the aqueous mixed solution prepared in the mixing vessel is fed to the filter via the pipe and filtered in the filter under increased pressure.
Abstract:
Provided is an organic material which can be employed for manufacturing an organic electroluminescent device having a long luminance half-lifetime. The organic material is a composition containing: a borane compound represented by Formula (B1): wherein three ArB1 represent an arylene group or a divalent aromatic heterocyclic group; and three XB1 represent an aromatic amino group, a monovalent aromatic heterocyclic group, an alkyl group, or a hydrogen atom; and a conjugated polymer compound represented by Formula (P1): wherein Arp1 represents an arylene group, with the proviso that Arp1 is different from Flup1; Flup1 represents a fluorenediyl group; Hetp1 represents a divalent aromatic heterocyclic group; Amp1 represents a divalent aromatic amine residue; nAr, nFlu, nHet and nAm are numbers representing molar ratios of Arp1, Flup1, Hetp1 and Amp1, respectively, and numbers satisfying 0.4≦nFlu≦1, 0≦nAr≦0.6, 0≦nHet≦0.6 and 0≦nAm≦0.6 when defining nAr+nFlu+nHet+nAm=1.
Abstract:
A biaxially stretch blow molded container is formed with a clearly transparent window portion in a longitudinal strip shape by preventing mixture and cut-in of a colored resin to the window portion. In a predetermined range extending from an upstream end to a downstream position of a flow path including a cylindrical flow path and a reduced-diameter flow path formed in a nozzle portion, a pair of guiding ribs in the form of longitudinal ridges is linearly arranged partitioning the flow path in a circumferential direction, and a longitudinal groove flow path is formed between the guiding ribs. A molten B resin is supplied to the longitudinal groove flow path, and a molten A resin is supplied to the cylindrical flow path excluding the longitudinal groove flow path. The longitudinal strip-shaped flow path of the B resin interrupts the cylindrical flow path of the A resin in the circumferential direction.
Abstract:
A superconducting coil is provided with a superconducting coil portion having a plurality of concentric coil layer portions. The superconducting coil portion is formed by winding a thin-film superconducting wire and an insulating material with a multilayer structure, wherein the concentric coil layer portions are adjacent to each other at boundary portions having adhesive force that are set to be less than that of other portions. The concentric coil layer portions each has a non-circular shape or circular shape.
Abstract:
Disclosed is an device having high light-emitting efficiency. A metal complex represented by the following formula (1). In the formula (1), n represents an integer of 1 to 3. LA and LB each independently represent the moiety of a group bonded to an iridium atom, except for coordinating atoms. When n is 3, a metal complex represented by the following formula (1-3): wherein Me represents a methyl group) is excluded.