Abstract:
Aspects of the disclosure provide a method for testing. The method includes determining an electrical characteristic of an integrated circuit (IC), subjecting the IC to a stress test, characterizing the electrical characteristic of the IC subsequently to subjecting the IC to the stress test, and determining a quality attribute of the IC based on a comparison of the respective electrical characteristics of the IC before and after subjecting the IC to the stress test.
Abstract:
Aspects of the disclosure provide an integrated circuit. The integrated circuit includes a scrambler configured to provide a driving address and associated data to an envelope based on a memory configuration for using a memory array. The driving address and the associated data are used to test the memory array according to a test pattern. The envelope is configured to translate the driving address into a corresponding physical address of the memory array based on the memory configuration.
Abstract:
A network switch which includes a plurality of output ports, at least one input port and a queuing manager. Each output port has a control unit associated therewith. The input port receives incoming data destined for various ones of the output ports. The queuing manager directs the incoming data to their destination output ports. Each control unit includes an output queue, a fullness/emptiness sensor and a head of line (HOL) mask. The output queue stores the incoming data destined for its associated output port. The sensor senses when the output queue reaches a fullness or an emptiness state. The HOL mask is connected to the output of the sensor and blocks inflow of the incoming data to the output queue when the sensor senses the fullness state and for enabling inflow when the sensor senses the emptiness state.
Abstract:
A network switch may include a buffer management module to manage buffers in a buffer memory. The buffer management module may include an Allocation SRAM and a Reclaim SRAM. Each buffer in the buffer memory may be associated with a corresponding bit in the Allocation SRAM and Reclaim SRAM. A line including bits indicating available buffers in the Allocation SRAM may be written to the allocation register, and the buffer management module may allocate buffers from the allocation register. A reclaim module may age bits in the Reclaim SRAM. The reclaim module may reclaim buffers by searching corresponding lines in the Allocation SRAM and Reclaim SRAM and comparing the values of bits in the two lines.
Abstract:
An integrated circuit, having a method therefor, includes a memory including a plurality of memory lines, each memory line including a plurality of data cells each to store a data bit, and a plurality of error-correction (EC) cells each to store an EC bit corresponding to the data bits stored in the data cells of the memory line; an EC input circuit to generate the EC bits based on the corresponding data bits; an EC output circuit including an EC correction circuit to correct errors in the bits read from the data cells of each of the memory lines in accordance with the bits read from the EC cells of the memory line; and a switch including first inputs to receive the EC bits from the EC input circuit, second inputs to receive test EC bits from EC test nodes of the integrated circuit, and outputs to provide either the EC bits or the EC test bits to the memory in accordance with a test signal.
Abstract:
Aspects of the disclosure provide an integrated circuit (IC) chip. The IC chip includes functional circuits configured to perform desired functions when a chip temperature is higher than a threshold, such as a room temperature. The IC chip includes a warm-up module configured to warm-up the IC chip in a warm-up mode to raise the chip temperature above the threshold. A method for warming up an IC chip prior to operation is also disclosed.
Abstract:
An integrated circuit includes logic circuits including the first and second logic circuits, and a scan chain configured to test the logic circuits. The scan chain includes the first scan chain portion for testing the first logic circuit based on an input test pattern and output the first output test pattern, a switching unit for selecting and outputting one of the input test pattern and the first output test pattern as a selected test pattern, and the second scan chain portion for testing the second logic circuit based on the selected test pattern from the switching unit and output the second output test pattern. The switching unit selects one of the input test pattern and the first output test pattern based on at least one of a logic depth, a number of gates, a number of gate inputs and a number of gate outputs of the logic circuits.
Abstract:
A self-repairing memory system includes memory including memory elements and redundant memory elements. The memory elements include a plurality of memory cells. A memory repair module identifies non-operational memory cells and selects at least one memory element including the non-operational memory cells. A first repair sub-circuit soft repairs the memory by substituting the selected memory elements with the redundant memory elements. A second repair sub-circuit hard repairs the memory based on the substitutions.
Abstract:
A self-repairing memory system includes memory including memory elements and redundant memory elements. The memory elements include a plurality of memory cells. A memory repair module identifies non-operational memory cells and selects at least one memory element including the non-operational memory cells. A first repair sub-circuit soft repairs the memory by substituting the selected memory elements with the redundant memory elements. A second repair sub-circuit hard repairs the memory based on the substitutions.
Abstract:
A memory system includes an array of memory cells. The array of memory cells includes redundant memory cells. The redundant memory cells include at least two of a redundant row and a redundant column of memory cells. The repair module is configured to (i) identify at least two of a row and a column of the array of memory cells having non-operational memory cells and (ii) substitute the at least two of the row and the column of the array of memory cells with selected rows or columns of the redundant memory cells based on X predetermined sequences of substitutions. The repair module is configured to detect a failure in the array of memory cells that cannot be repaired using the X predetermined sequences of substitutions, and use an alternative repair sequence to repair the non-operational memory cells based on the detection of the failure.