Abstract:
A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
Abstract:
An apparatus for pre-activation of a polymer electrolyte fuel cell includes a first plate and a second plate hot pressing the unit cell stack, each having a flow channel supplying water vapor to opposing inner surfaces with the unit cell stack therebetween and including a resistor producing heat, a compressor, a temperature controller and a water vapor supplier connected to the flow channels of the plates. The apparatus for pre-activating a polymer electrolyte fuel cell may be used to prepare a prep-activated integrated body of a polymer electrolyte fuel cell membrane electrode assembly and gas diffusion layers by performing hot pressing while supplying water vapor to the unit cell stack to hydrate the polymer electrolyte membrane. And the apparatus for pre-activating a polymer electrolyte fuel cell is used to monitor physical damage of the membrane electrode assembly based on the change of degree of vacuum at a fuel electrode side and an air electrode side using, thereby detecting the leaking membrane electrode assembly in advance.
Abstract:
Provided is a method for fabricating membrane electrode assembly (MEA) on a polymer electrolyte membrane fuel cell. The method includes adhering or fixing the first backing film to a polymer electrolyte membrane; forming a first catalyst layer on the polymer electrolyte membrane; removing the first backing film; adhering or fixing the second backing film to the first catalyst layer formed on the surface of the polymer electrolyte membrane; forming the second catalyst layer on the other side of the polymer electrolyte membrane; and removing the second backing film to complete the MEA.
Abstract:
Provided is an apparatus for detecting leak in fuel cells. The apparatus includes: a detection gas intake unit connected to a detection gas storage; a supply unit supplying detection gas to supply manifolds of the fuel cells; a recovering unit connected to exhaust manifolds of the fuel cells; and a measuring unit measuring pressure of the detection gas supplied to the fuel cells, wherein in the fuel cells, a product and cooling fluid are exhausted through the exhaust manifolds after cathode/anode reaction gas and cooling fluid are supplied to the inside through the supply manifolds to generate an electrochemical reaction. Accordingly, presence of leak and leaked portions of the entire fuel cells are detected by using an inert detection gas.
Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided so as to evaluate the performance of the fuel cell in an environment in which temperature is maintained at a uniform temperature.According to the present invention, the temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained. Further, the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled. Therefore, the evaluation of the performance of the fuel cell can be easily and precisely achieved in an environmental temperature in which the operation of the fuel cell is required.
Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided maintain the cell or stack at a uniform temperature. The temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained such that the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled.
Abstract:
Disclosed is an integrated multi-measurement system for measuring physical properties including thickness, electrical resistance and differential pressure of a gas diffusion layer for a polymer electrolyte fuel cell with respect to compression. The integrated multi-measurement system simultaneously measures changes in the physical properties of the gas diffusion layer depending on pressure upon measurement of the physical properties of the gas diffusion layer of the fuel cell and also measures through-plane permeability in which a gas is passed through a sample in a direction perpendicular to the sample and in-plane permeability in which a gas is passed through a sample in a direction parallel to the sample.
Abstract:
A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
Abstract:
A quality control apparatus for a gas diffusion layer includes a support, at least one first pressure device, a plate provided below the first pressure device and supporting the pressure applied to the gas diffusion layer sample, a first controller controlling the compression of the first pressure device, a thickness gauge measuring the thickness of the gas diffusion layer sample, a flow channel formed in the sample compressing portion to discharge a gas to the gas diffusion layer sample, a gas supply controller, a gas supply source, a pressure gauge, two fixing devices, a third controller controlling the compression of the fixing devices, two second pressure, a second controller controlling the compression of the second pressure device, a stopper, a protrusion, and a load cell.
Abstract:
The present disclosure relates to a method for preparing sulfonated polyarylene ether sulfone copolymer used in fabricating an electrolyte polymer membrane which is core material, the method comprising: A) mixing monomers, 4,4′-dihydroxydiphenyl; bis(4-chlorophenyl)sulfone or bis(4-fluorophenyl)sulfone; and 3,3′-disulfonated-4,4′-chlorodiphenyl sulfone with K2CO3; B) dissolving said mixture in a reaction solvent, i.e. N,N-Dimethylacetamide; C) reacting said dissolved mixture for 16˜20 hours at a temperature of 160˜190° C.; and D) precipitating, cleaning and filtering, and then drying said reactant.
Abstract translation:本发明涉及制备作为核心材料的电解质聚合物膜的磺化聚亚芳基醚砜共聚物的制备方法,该方法包括:A)将单体,4,4'-二羟基二苯基, 二(4-氯苯基)砜或双(4-氟苯基)砜; 和3,3'-二磺基-4,4'-氯二苯基砜与K 2 CO 3; B)将所述混合物溶解在反应溶剂即N,N-二甲基乙酰胺中; C)使所述溶解的混合物在160〜190℃的温度下反应16〜20小时。 和D)沉淀,清洗和过滤,然后干燥所述反应物。