Abstract:
A method for automating tracking of an effectiveness of fault repairs. The method may involve defining a unique fault code for each one of a plurality of different faults; cataloging faults that are repaired according to their respective fault codes and storing each cataloged fault in a fix effectiveness subsystem; placing the fix effectiveness subsystem in communication with an electronic logbook (ELB) system that is able to populate the fix effectiveness subsystem with additional fault information; providing a user interface to enable a user to access said ELB system to obtain information on a specific fault condition that was previously stored on the fix effectiveness subsystem; and presenting a fault history to the user from information stored in the fix effectiveness subsystem that enables the user to select a repair procedure for correcting the specific fault condition.
Abstract:
A method for synchronizing information shared by a subsystem on-board a mobile platform and a subsystem remote from the mobile platform. The method may involve designating one of the subsystems as a first system having a first database, and designating one of the subsystems as a second system having a second database. The first subsystem may be used to transmit a synchronization request to the second subsystem, with the synchronization request including a synchronization point to be used as a reference for future synchronization operations between the subsystems. The second subsystem may be used to receive the synchronization request and to check the second database for any records that have been created or modified since a previously performed synchronization operation. Information may then be transmitted back to the first subsystem that includes information concerning the new or modified records.
Abstract:
A method for providing an airline a global view of asset management is described. The method includes receiving data relating to aircraft positions from at least one data source, receiving data relating to flight and maintenance schedules for the aircraft from at least one other data source, correlating the received data in accordance with one or more business rules, interpreting the correlated data to determine potential impacts to assets and resources from an airline system perspective, and presenting the interpretation of the correlated data in a single format to a user.
Abstract:
A method for providing an enterprise with a situational awareness for conditions related to aircraft departure is described. The method includes receiving data related to one or more events that have the potential to affect conditions related to an aircraft's departure from a plurality of enterprise related systems, correlating the received data in accordance with one or more business rules, generating an aircraft departure situational awareness data set from the correlated data, processing the aircraft departure situational awareness data set in view of at least one user profile, and providing at least one recommendation, each recommendation associated with one user profile, directed to addressing the conditions related to aircraft departure.
Abstract:
A method for synchronizing information shared by a subsystem on-board a mobile platform and a subsystem remote from the mobile platform. The method may involve designating one of the subsystems as a first system having a first database, and designating one of the subsystems as a second system having a second database. The first subsystem may be used to transmit a synchronization request to the second subsystem, with the synchronization request including a synchronization point to be used as a reference for future synchronization operations between the subsystems. The second subsystem may be used to receive the synchronization request and to check the second database for any records that have been created or modified since a previously performed synchronization operation. Information may then be transmitted back to the first subsystem that includes information concerning the new or modified records.
Abstract:
A method for real-time validation of an electronically signature generated onboard a mobile system. The method includes maintaining a ground mobile user account management (GMUAM) module user database to have up-to-date authorized user account information. The GMUAM is hosted by a stationary central computer system (CCS). The method additionally includes transferring the up-to-date authorized user account information stored on the GMUAM user database to a mobile user account management (MUAM) module user database, thereby updating the MUAM user data base with up-to-date authorized user account information. The MUAM module is included in an onboard computer system (OCS) hosted by the mobile system. The method further includes evoking a signature validator module communicatively connected to the MUAM module to access the MUAM database and verify whether user account information included in an electronic signature initiated by a secure data application (SDA) is authorized user account information. The SDA and the signature validator module hosted by the OCS.
Abstract:
A method for carrying out a logbook flight preparation process to present pre-flight information to a flight crew member of an aircraft prior to a flight mission. The method may involve electronically accessing a database to obtain a quantity of pre-flight information relating to an airworthiness of the aircraft, with the database being at least one of on-board the aircraft and remote from said aircraft. The quantity of pre-flight information is displayed in accordance with a desired sequence in which the information is to be presented to said flight crew member. The quantity of preflight information may be presented on a visual display in the desired sequence.
Abstract:
A method for providing an airline a global view of resource management is described. The method includes receiving data relating to aircraft positions from at least one data source, receiving data relating to flight and maintenance schedules for the aircraft from at least one other data source, correlating the received data in accordance with one or more business rules, interpreting the correlated data to determine potential impacts to resources from an airline system perspective, and presenting the interpretation of the correlated data in a single format to a user.
Abstract:
A system and method of automatically advising an individual, in real-time, of all available facts related to a current situation. The method is facilitated by a system, which automatically retrieves data related to a situation from a plurality of aviation enterprise systems, processes the data retrieved in real time and generates a situational awareness data that is presented in an optimal format to a user on an interface device. Processing of the data retrieved from the plurality of aviation enterprise systems comprises correlating the data in accordance with business rules and interpreting the data in view of previously stored historical information that relates to the situation. The situational awareness data generated is further processed in view of a user profile in order to create a viewable situational awareness data that has been optimized for presentation to an identified user of the system in accordance with the user profile.
Abstract:
A system and method for non-real-time validation of an electronically signed message transmitted via an asynchronous communications link is provided. The method includes creating an electronic message comprising an electronically signed data entry created by executing a secure data application first portion (SDA1) module hosted by a mobile system. The method additionally includes passing the message to a communications management function first portion (CMF1) module via a synchronous interface. The CMF1 module is hosted by the mobile system. The method further includes transmitting the message from the CMF1 module to a communications management function second portion (CMF2) module in a temporally delayed manner using an asynchronous communications link. The CMF2 module is hosted by a central computer system (CCS) located remotely from the mobile system. The method further yet includes validating the electronically signed entry in a temporally delayed manner utilizing a user database. The user database is hosted by the CCS and has stored thereon user account information for all users authorized to electronically sign entries transmitted from the mobile system to the CCS. The user account information includes user information and/or user personal identification numbers (PINs) for each authorized user.